终身会员
搜索
    上传资料 赚现金

    17.1.3 利用勾股定理作图或计算课件PPT

    立即下载
    加入资料篮
    17.1.3 利用勾股定理作图或计算课件PPT第1页
    17.1.3 利用勾股定理作图或计算课件PPT第2页
    17.1.3 利用勾股定理作图或计算课件PPT第3页
    17.1.3 利用勾股定理作图或计算课件PPT第4页
    17.1.3 利用勾股定理作图或计算课件PPT第5页
    17.1.3 利用勾股定理作图或计算课件PPT第6页
    17.1.3 利用勾股定理作图或计算课件PPT第7页
    17.1.3 利用勾股定理作图或计算课件PPT第8页
    还剩15页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学人教版八年级下册17.1 勾股定理课文ppt课件

    展开

    这是一份初中数学人教版八年级下册17.1 勾股定理课文ppt课件,共23页。PPT课件主要包含了欣赏下面海螺的图片,勾股定理与数轴,归纳总结,“数学海螺”,类比迁移,勾股定理与网格,即EC的长为3cm,要用到方程思想,补形法求面积,通常用到方程思想等内容,欢迎下载使用。


    1. 会运用勾股定理确定数轴上表示实数的点及解决 网格问题.(重点)2.灵活运用勾股定理进行计算,并会运用勾股定理 解决相应的折叠问题.(难点)
    在数学中也有这样一幅美丽的“海螺型”图案,如第七届国际数学教育大会的会徽.
    这个图是怎样绘制出来的呢?
    问题1 你能在数轴上画出表示 的点吗? 呢?
    用同样的方法作 呢?
    提示:可以构造直角三角形作出边长为无理数的边,就能在数轴上画出表示该无理数的点.
    我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴 上画出表示 的点吗? 如果能画出长为 的线段,就能在数轴上画出表示 的点.容易知道,长为 的线段是两条直角边的长都为1的直角三角形的斜边.那么长为 的线段能是直角边的长为正整数的直角三角形的斜边吗?
    利用勾股定理,可以发现,直角边的长为正整数2, 3的直角三角形的斜边长为 .由此,可以依照如下方法在数轴上画出表示 的点. 如图,在数轴上找出表示3的点A, 则OA=3,过点A作直线l垂直于OA,在l上取点B,使AB = 2,以原点O为圆心,以OB为半径作弧,弧与数轴的交点C即为表示 的点.
    也可以使OA=2,AB=3,同样可以求出C点.
    利用勾股定理表示无理数的方法:
    (1)利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.
    (2)以原点为圆心,以无理数斜边长为半径画弧与数轴存在交点,在原点左边的点表示是负无理数,在原点右边的点表示是正无理数.
    例1 如图,数轴上点A所表示的数为a,求a的值.
    解:∵图中的直角三角形的两直角边长为1和2,∴斜边长为 ,即-1到A的距离是 ,∴点A所表示的数为 .
    易错点拨:求点表示的数时注意画弧的起点不从原点起,则所表示的数不是斜边长.
    画一画 在5×5的正方形网格中,每个小正方形的边长都为1,请在给定网格中以A出发分别画出长度为 的线段AB.
    例2 在如图所示的6×8的网格中,每个小正方形的边长都为1,写出格点△ABC各顶点的坐标,并求出此三角形的周长.
    解:由题图得A(2,2),B(-2,-1),C(3,-2).由勾股定理得∴△ABC的周长为
    归纳:勾股定理与网格的综合求线段长时,通常是把线段放在与网格构成的直角三角形中,利用勾股定理求其长度.
    例3 如图,在△ABC中,∠C=60°,AB=14,AC =10. 求BC的长.
    三、勾股定理与在几何问题中的应用
    解:如图,过点A作AD⊥BC于D. ∵∠ADC=90°,∠C=60°,∴CD= AC=5. 在Rt△ACD中, AD 在Rt△ABD中, BD ∴BC=BD+CD=11+5=16.
    例4 如图,折叠长方形ABCD的一边AD,使点D落在BC边的F点处,若AB=8cm,BC=10cm,求EC的长.
    解:在Rt△ABF中,由勾股定理,得 BF2=AF2-AB2=102-82=36,∴BF=6cm.∴CF=BC-BF=4.设EC=xcm,则EF=DE=(8-x)cm ,在Rt△ECF中,根据勾股定理得 x2+ 42=(8-x)2,解得 x=3.
    例5 如图,四边形ABCD中∠A=60°,∠B=∠D=90°,AB=2,CD=1,求四边形ABCD的面积.
    解:如图,延长AD、BC交于E.∵∠B=90°,∠A=60°,∴∠E=90°-60°=30°,在Rt△ABE和Rt△CDE中,∵AB=2,CD=1,∴AE=2AB=2×2=4,CE=2CD=2×1=2,由勾股定理得
    1. 如图,点C表示的数是(  ) A.1 B. C.1.5 D.
    2.如图,在长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴于点M,则点M表示的数为(  )
    3.如图,在平面直角坐标系中,点P的坐标为(-2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于(  )A.-4和-3之间 B.3和4之间C.-5和-4之间 D.4和5之间
    4. 如图是一张直角三角形的纸片,两直角边AC=6 cm,BC=8 cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为(  ) A.4 cm B.5 cm C.6 cm D.10 cm
    5.如图是由4个边长为1的正方形构成的“田字格”,只用没有刻度的直尺在这个“田字格”中最多可以作出长度为 的线段________条.
    6.如图,网格中的小正方形边长均为1,△ABC的三个顶点均在格点上,则AB边上的高为_______.
    解:∵AB=AD=8cm,∠A=60°,∴△ABD是等边三角形.∵∠ADC=150°,∴∠CDB=150°-60°=90°,∴△BCD是直角三角形.又∵四边形的周长为32cm,∴CD+BC=32-AD-AB=32-8-8=16(cm).设CD=xcm,则BC=(16-x)cm,由勾股定理得82+x2=(16-x)2, 解得x=6. ∴S△BCD= ×6×8=24(cm2).
    7.如图,在四边形ABCD中,AB=AD=8cm,∠A=60°,∠ADC=150°,已知四边形ABCD的周长为32cm,求△BCD的面积.
    利用勾股定理作图或计算
    在数轴上表示出无理数的点
    利用勾股定理解决网格中的问题
    利用勾股定理解决折叠问题及其他图形的计算
    通常与网格求线段长或面积结合起来

    相关课件

    初中数学人教版八年级下册17.1 勾股定理图文课件ppt:

    这是一份初中数学人教版八年级下册17.1 勾股定理图文课件ppt,共23页。PPT课件主要包含了欣赏下面图片,这些都是什么的图片,“数学海螺”,构造直角三角形填一填,解如图所示,基础练习,能力提升等内容,欢迎下载使用。

    八年级下册17.1 勾股定理完美版ppt课件:

    这是一份八年级下册17.1 勾股定理完美版ppt课件,共25页。PPT课件主要包含了“数学海螺”,即EC的长为3cm,要用到方程思想,补形法求面积等内容,欢迎下载使用。

    人教版八年级下册17.1 勾股定理课文配套课件ppt:

    这是一份人教版八年级下册17.1 勾股定理课文配套课件ppt,共38页。PPT课件主要包含了学习目标,求得结果,复习回顾,情境引入,点A表示的数字为-2,点C表示的数字为1,点D表示的数字为2,数轴上的点,一一对应,知识精讲等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map