


初中数学浙教版九年级下册2.3 三角形的内切圆教学ppt课件
展开
这是一份初中数学浙教版九年级下册2.3 三角形的内切圆教学ppt课件,共6页。
2.3三角形的内切圆 课题 2.3三角形的内切圆 单元第二单元学科数学年级九年级下册学习目标 1. 掌握三角形的内切圆及内心的概念,能进行与内切 圆有关的计算; 2.会作三角形的内切圆; 3.三角形的内切圆在实际生活中的应用. 重点三角形的内切圆的概念. 难点例2是内切圆的概念、切线的性质和全等三角形等知识的综合应用,辅助线较多,是本节教学的难点.教学过程导入新课【引入思考】 如图,要从一块三角形钢化玻璃上裁下一个半径尽可能大的圆来做一圆桌的桌面,应该怎样画出裁剪的图样呢?建议按下列步骤探索:(1)当裁得的圆最大时,圆与三角形的各边有什么位置关系?(2)与三角形的一个角的两边都相切的圆的圆心在哪里?(3)如何确定这个圆的圆心和半径? 新知讲解提炼概念 定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.性质:内心到三角形三边的距离相等;内心与顶点连线平分内角. 典例精讲 【例1】如图,等边三角形ABC的边长为3cm.求△ABC的内切圆⊙O的半径. 【例2】已知:如图,⊙O是△ABC的内切圆,切点分别为D,E,F.设△ABC的周长为l.
求证:AE+BC=l. 如例2图,设△ABC的面积为S,周长为l,△ABC的内切圆的半径为r,则S=lr.请说明理由. 课堂练习巩固训练 1、如图,⊙O是△ABC的内切圆,D、E、F是切点,∠A=50°,∠C=60°,则∠DOE=( ) (A)70° (B)110° (C)120° (D)130° 2.某石油公司计划在三条公路围成的一块平地上建一个加油站,综合各种因素,要求这个加油站到三条公路的距离相等,则应建在( ) A.△ABC的三条内角平分线的交点处B.△ABC的三条高线的交点处C.△ABC三边的中垂线的交点处D.△ABC的三条中线的交点处 3.小兵手拿一张等腰三角形纸片△ABC,AB=AC=10 cm,BC=12 cm,如图所示,他要同学小红求出这张纸片上裁剪出一个最大的圆的半径.小红说:“可以,但你要取一张最小的圆形纸片将△ABC完全覆盖.”小兵说:“行,咱俩比一比!”聪明的同学,请你也来求一求这裁剪出的最大圆的半径与最小覆盖圆的半径.4. 如图,⊙O是Rt△ABC的内切圆,∠C=90°,AO的延长线交BC于点D.若AC=6,CD=2,求⊙O的半径. 答案 引入思考解:(1)圆与三角形的各边都相切.(2)圆心在这个角的角平分线上.(3)两个内角的角平分线交点为圆心,以交点到三角形的任一边的距离为半径. 提炼概念 典例精讲 例1 解:如图,设⊙O切AB于点D,连结OA,OB,OD.
∵⊙O是△ABC的内切圆,
∴AO,BO是∠BAC,∠ABC的角平分线,
∵△ABC是等边三角形,
∴∠OAB=∠OBA=30°.
∵OD⊥AB,AB=3cm.
∴AD=BD=AB=1.5(cm).
∴OD=AD×tan30°=1.5×=(cm).
答:△ABC的内切圆的半径为cm.例2 证明:∵⊙O是△ABC的内切圆,E,F为切点,
∴AE=AF(切线长定理).
同理,BD=BF,CD=CE.
∴AE+BC=AE+BD+CD=(AE+AF+BD+BF+CD+CE)=l.如例2图,设△ABC的面积为S,周长为l,△ABC的内切圆的半径为r,则S=lr.请说明理由.解:如图,⊙O是△ABC的内切圆,切点分别为D,E,F.连结OA,OB,OC,OD,OE,OF,则OD⊥BC,OE⊥AC,OF⊥AB,且OE=OF=OD=r.∵S=S△AOB+S△OBC+S△COA,∴S=AB×OF+BC×OD+CA×OE=r(AB+BC+CA)=lr.巩固训练 1.B2.A3.解: 剪出的最大圆为△ABC的内切圆,设圆心为I,最小覆盖圆是△ABC的外接圆,设圆心为O.(1)连结IB,过点A作AD⊥BC于D,IE⊥AB于E,∵AB=AC=10 cm,∴I,O均在AD上,BD=BC=×12=6(cm),∴AD===8(cm).设内切圆半径为r,∵I为内心,∴IE=ID=r,AI=8-r,又∵∠BEI=∠BDI=90°,BI=BI,EI=DI,∴Rt△BEI≌Rt△BDI,∴BE=BD=6 cm,∴AE=AB-BE=4 cm. 4.解:过O分别作AC,BC的垂线.OE,OF,E,F为垂足,易证四边形OECF为正方形,设边长为x,即为⊙O的半径.∵∠AEO=∠ACD=Rt∠,∴△AEO∽△ACD,∴=,解得x=1.5. 课堂小结1.内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.2任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.3三角形内心的性质: 三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.
相关课件
这是一份初中数学浙教版九年级下册2.3 三角形的内切圆优秀课件ppt,文件包含23三角形的内切圆课件ppt、23三角形的内切圆教案doc、23三角形的内切圆学案doc等3份课件配套教学资源,其中PPT共22页, 欢迎下载使用。
这是一份浙教版九年级下册第二章 直线与圆的位置关系2.3 三角形的内切圆评课ppt课件PPT课件主要包含了一起探究,☉O就是所求的圆,知识总结,三角形的内心性质,解得x4等内容,欢迎下载使用。
这是一份初中数学2.3 三角形的内切圆优秀课件ppt,文件包含23三角形的内切圆课件ppt、23三角形的内切圆学案doc、23三角形的内切圆教案doc等3份课件配套教学资源,其中PPT共22页, 欢迎下载使用。
