《第5章相交线与平行线》期末复习综合提升训练2(附答案)-2021-2022学年人教版七年级数学下册
展开这是一份《第5章相交线与平行线》期末复习综合提升训练2(附答案)-2021-2022学年人教版七年级数学下册,共16页。
A.∠3=∠AB.∠1=∠2
C.∠D=∠DCED.∠D+∠ACD=180°
2.如图,下列能判定AB∥EF的条件有( )
①∠B+∠BFE=180°②∠1=∠2③∠3=∠4④∠B=∠5.
A.1个B.2个C.3个D.4个
3.如图,OP∥QR∥ST,则下列各式中正确的是( )
A.∠1+∠2+∠3=180°B.∠1+∠2﹣∠3=90°
C.∠1﹣∠2+∠3=90°D.∠2+∠3﹣∠1=180°
4.如图,CD∥AB,OE平分∠AOD,OF⊥OE,OG⊥CD,∠CDO=50°,则下列结论:
①∠AOE=65°;②OF平分∠BOD;③∠GOE=∠DOF;④∠AOE=∠GOD.
其中正确结论的个数是( )
A.1个B.2个C.3个D.4个
5.如图,已知长方形纸片ABCD,点E,H在AD边上,点F,G在BC边上,分别沿EF,GH折叠,使点B和点C都落在点P处,若∠FEH+∠EHG=118°,则∠FPG的度数为( )
A.54°B.55°C.56°D.57°
6.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为( )
A.60°B.65°C.72°D.75°
7.如图,已知直线a∥b,则∠1、∠2、∠3的关系是( )
A.∠1+∠2+∠3=360°B.∠1+∠2﹣∠3=180°
C.∠1﹣∠2+∠3=180°D.∠1+∠2+∠3=180°
8.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为( )
A.100米B.99米C.98米D.74米
9.如图,△ABC沿着由点B到点E的方向,平移到△DEF.若BC=5,EC=3,则平移的距离为( )
A.7B.5C.3D.2
10.如果∠α与∠β的两边分别平行,∠α比∠β的3倍少40°,则∠α的度数为( )
A.20°B.125°C.20°或125°D.35°或110
11.如图,已知直线AB∥CD,∠GEB的平分线EF交CD于点F,∠1=42°,则∠2= .
12.如图,已知AB∥CD,∠1=30°,∠2=90°,则∠3等于 °.
13.如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2= .
14.如图,已知直线AB⊥CD,垂足为O,直线EF经过点O,2∠1=3∠2,则∠EOB的度数为 .
15.如图,AB∥CD,点E是BC上一点,过点E的直线分别与AB,CD交于点M,N,∠1=135°,∠2=65°,则∠B的度数为 .
16.如图,直线a∥b,直线AB⊥AC,若∠1=50°,则∠2= .
17.已知:如图,直线l1∥l2,∠ABC=∠C,若∠1=40°,则∠2= .
18.如图,在三角形ABC中,∠ABC=90°,BC=11,把三角形ABC向下平移至三角形DEF后,AD=CG=6,则图中阴影部分的面积为 .
19.直线AB、CD相交于点O,∠AOC=30°,若OE⊥AB,OF平分∠DOE,则∠COF的度数为 .
20.已知如图,AB∥CD,∠A=130°,∠D=25°,那么∠AED= °.
21.如图,AD⊥BE,BC⊥BE,∠A=∠C,点C,D,E在同一条直线上.求证:AB∥CD.
22.如图,点D、F在线段AB上,点E、G分别在线段BC和AC上,CD∥EF,∠1=∠2.
(1)判断DG与BC的位置关系,并说明理由;
(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明AB与CD有怎样的位置关系?
23.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.
24.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.
(1)求证:CE∥GF;
(2)试判断∠AED与∠D之间的数量关系,并说明理由;
(3)若∠EHF=80°,∠D=30°,求∠AEM的度数.
25.如图,已知DC∥FP,∠1=∠2,∠FED=28°,∠AGF=80°,FH平分∠EFG.
(1)说明:DC∥AB;
(2)求∠PFH的度数.
26.(1)根据下列叙述填依据:
已知:如图①,AB∥CD,∠B+∠BFE=180°,求∠B+∠BFD+∠D的度数.
解:因为∠B+∠BFE=180°,
所以AB∥EF( ).
又因为AB∥CD,
所以CD∥EF ( ).
所以∠CDF+∠DFE=180° ( ).
所以∠B+∠BFD+∠D=∠B+∠BFE+∠DFE+∠D=360°.
(2)根据以上解答进行探索:如图②,AB∥EF,那么∠BDF与∠B,∠F有何数量关系?并说明理由.
(3)如图③④,AB∥EF,你能探索出图③、图④两个图形中,∠BDF与∠B,∠F的数量关系吗?请直接写出结果.
参考答案
1.解:A、∠3=∠A,无法得到,AB∥CD,故此选项错误;
B、∠1=∠2,根据内错角相等,两直线平行可得:AB∥CD,故此选项正确;
C、∠D=∠DCE,根据内错角相等,两直线平行可得:BD∥AC,故此选项错误;
D、∠D+∠ACD=180°,根据同旁内角互补,两直线平行可得:BD∥AC,故此选项错误;
故选:B.
2.解:①∵∠B+∠BFE=180°,∴AB∥EF,故本小题正确;
②∵∠1=∠2,∴DE∥BC,故本小题错误;
③∵∠3=∠4,∴AB∥EF,故本小题正确;
④∵∠B=∠5,∴AB∥EF,故本小题正确.
故选:C.
3.解:方法一、延长TS,
∵OP∥QR∥ST,
∴∠2=∠4,
∵∠3与∠ESR互补,
∴∠ESR=180°﹣∠3,
∵∠4是△FSR的外角,
∴∠FSR+∠1=∠4,即180°﹣∠3+∠1=∠2,
∴∠2+∠3﹣∠1=180°.
方法二、∵OP∥QR∥ST,
∴∠2+∠PRQ=180°,∠3=∠1+∠PRQ,
∴∠2+∠3﹣∠1=180°,
故选:D.
4.解:∵CD∥AB,
∴∠BOD=∠CDO=50°,
∴∠AOD=180°﹣∠BOD=130°,
∵OE平分∠AOD,
∴∠AOE=∠AOD=65°;
故①正确;
∵OF⊥OE,
∴∠BOF=90°﹣∠AOE=25°,
∵∠BOD=50°,
∴OF平分∠BOD;
故②正确;
∵OG⊥CD,CD∥AB,
∴OG⊥AB,
∴∠GOE=90°﹣∠AOE=25°,
∵∠DOF=∠BOD=25°,
∴∠GOE=∠DOF;
故③正确;
∴∠AOE=65°,∠GOD=40°;
故④错误.
故选:C.
5.解:∵四边形ABCD是长方形,
∴AD∥BC,
∴∠FEH=∠BFE,∠EHG=∠CGH,
∴∠BFE+∠CGH=∠FEH+∠EHG=118°,
由折叠可知:
EF,GH分别是∠BFP和∠CGP的角平分线,
∴∠PFE=∠BFE,∠PGH=∠CGH,
∴∠PFE+∠PGH=∠BFE+∠CGH=118°,
∴∠BFP+∠CGP=2(∠BFE+∠CGH)=236°,
∴∠PFG+∠PGF=360°﹣(∠BFP+∠CGP)=360°﹣236°=124°,
∴∠FPG=180°﹣(∠PFG+∠PGF)=180°﹣124°=56°.
故选:C.
6.解:由翻折的性质可知:∠AEF=∠FEA′,
∵AB∥CD,
∴∠AEF=∠1,
∵∠1=2∠2,设∠2=x,则∠AEF=∠1=∠FEA′=2x,
∴5x=180°,
∴x=36°,
∴∠AEF=2x=72°,
故选:C.
7.解:如图,过A作AB∥a,
∵a∥b,
∴AB∥b,
∴∠1+∠BAD=180°,∠2=∠BAC=∠3+∠BAD,
∴∠BAD=∠2﹣∠3,
∴∠1+∠2﹣∠3=180°,
故选:B.
8.解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,
图是矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,
则小明从出口A到出口B所走的路线长为50+(25﹣1)×2=98米.
故选:C.
9.解:由题意得平移的距离为:BE=BC﹣EC=5﹣3=2,
故选:D.
10.解:设∠β为x,则∠α为3x﹣40°,
若两角互补,则x+3x﹣40°=180°,解得x=55°,∠α=125°;
若两角相等,则x=3x﹣40°,解得x=20°,∠α=20°.
故选:C.
11.解:∵AB∥CD,
∴∠GEB=∠1=42°,
∵EF为∠GEB的平分线,
∴∠FEB=∠GEB=21°,
∴∠2=180°﹣∠FEB=159°.
故答案是:159°.
12.解:过点O做OP∥AB∥CD,
∴∠A=∠AOP=30°,∠D=∠POC,
∵∠2=90°,
即∠AOC=90°,
∴∠POC=60°,
∴∠POC=60°.
故答案为:60.
13.解:如图,
∵∠1+∠3=125°,∠2+∠4=85°,
∴∠1+∠3+∠2+∠4=210°,
∵l1∥l2,
∴∠3+∠4=180°,
∴∠1+∠2=210°﹣180°=30°.
故答案为30°.
14.解:∵直线AB⊥CD,
∴∠AOC=90°,
∵2∠1=3∠2,
∴∠1=∠2,
设∠2=x,则∠1=x,
故x+x=90°,
解得:x=36°,
则∠BOE=180°﹣36°=144°.
故答案为:144°.
15.解:∵∠1=135°,
∴∠CEN=180°﹣135°=45°,
∴∠C=∠2﹣∠CEN=65°﹣45°=20°,
∵AB∥CD,
∴∠B=∠C=20°,
故答案为:20.
16.解:∵直线a∥b,
∴∠2=∠B,
∵直线AB⊥AC,∠1=50°,
∴∠B+∠1=90°.
∴∠2=∠B=40°.
故答案为:40°.
17.解:∵∠ABC=∠C,
∴AE∥CD,
∴∠2+∠3=180°.
又∵l1∥l2,∠1=40°,
∴∠1=∠3=40°,
∴∠2=180°﹣40°=140°.
故答案为:140°.
18.解:∵三角形ABC向下平移至三角形DEF,
∴AD=BE=6,EF=BC=11,S△ABC=S△DEF,
∵BG=BC﹣CG=11﹣6=5,
∴S梯形BEFG=(5+11)×6=48,
∵S阴影部分+S△DBG=S△DBG+S梯形BEFG,
∴S阴影部分=S梯形BEFG=48.
故答案为48.
19.解:(1)当射线OE在直线AB上方时,如图1,
∵OE⊥AB,
∴∠BOE=90°,
∵∠AOC=30°,
∴∠BOD=30°,
∴∠DOE=∠BOD+∠BOE=120°,
∵OF平分∠DOE,
∴∠DOF=60°,
∴∠COF=180°﹣∠DOF=120°.
(2)当射线OE在直线AB下方时,如图2,
∵OE⊥AB,
∴∠BOE=90°,
∵∠AOC=30°,
∴∠BOD=30°,
∴∠DOE=∠BOE﹣∠BOD=60°,
∵OF平分∠DOE,
∴∠DOF=30°,
∴∠COF=180°﹣∠DOF=150°.
故答案为:150°或120°.
20.解:如图:过E作EF∥AB,则AB∥EF∥CD,
∵∠A=130°,
∴∠1=180°﹣130°=50°,
∵∠D=25°,
∴∠2=∠D=25°,
∴∠AED=50°+25°=75°,
故答案为:75.
21.证明:∵AD⊥BE,BC⊥BE,
∴AD∥BC,
∴∠ADE=∠C,
∵∠A=∠C,
∴∠ADE=∠A,
∴AB∥CD.
22.解:(1)DG∥BC.
理由:∵CD∥EF,
∴∠2=∠BCD.
∵∠1=∠2,
∴∠1=∠BCD,
∴DG∥BC;
(2)CD⊥AB.
理由:∵由(1)知DG∥BC,∠3=85°,
∴∠BCG=180°﹣85°=95°.
∵∠DCE:∠DCG=9:10,
∴∠DCE=95°×=45°.
∵DG是∠ADC的平分线,
∴∠ADC=2∠CDG=90°,
∴CD⊥AB.
23.解:∵EF∥AD,AD∥BC,
∴EF∥BC,
∴∠ACB+∠DAC=180°,
∵∠DAC=120°,
∴∠ACB=60°,
又∵∠ACF=20°,
∴∠FCB=∠ACB﹣∠ACF=40°,
∵CE平分∠BCF,
∴∠BCE=20°,
∵EF∥BC,
∴∠FEC=∠ECB,
∴∠FEC=20°.
24.解:(1)∵∠CED=∠GHD,
∴CE∥GF;
(2)∠AED+∠D=180°;
理由:∵CE∥GF,
∴∠C=∠FGD,
又∵∠C=∠EFG,
∴∠FGD=∠EFG,
∴AB∥CD,
∴∠AED+∠D=180°;
(3)∵∠GHD=∠EHF=80°,∠D=30°,
∴∠CGF=80°+30°=110°,
又∵CE∥GF,
∴∠C=180°﹣110°=70°,
又∵AB∥CD,
∴∠AEC=∠C=70°,
∴∠AEM=180°﹣70°=110°.
25.解:(1)∵DC∥FP,
∴∠3=∠2,
又∵∠1=∠2,
∴∠3=∠1,
∴DC∥AB;
(2)∵DC∥FP,DC∥AB,∠DEF=28°,
∴∠DEF=∠EFP=28°,AB∥FP,
又∵∠AGF=80°,
∴∠AGF=∠GFP=80°,
∴∠GFE=∠GFP+∠EFP=80°+28°=108°,
又∵FH平分∠EFG,
∴∠GFH=∠GFE=54°,
∴∠PFH=∠GFP﹣∠GFH=80°﹣54°=26°.
26.解:(1)因为∠B+∠BFE=180°,
所以AB∥EF(同旁内角互补,两直线平行 ),
因为AB∥CD(已知),
所以CD∥EF(如果两条直线都与第三条直线平行,那么这两条直线也平行),
所以∠CDF+∠DFE=180°(两直线平行,同旁内角互补),
所以∠B+∠BFD+∠D=∠B+∠BFE+∠EFD+∠D=360°;
(2)过点D作AB的平行线DC,
因为AB∥EF,
所以∠B=∠BDC,
因为AB∥EF,
所以CD∥EF,
所以∠F=∠FDC,
所以∠BDF=∠B+∠F
(3)过点D作AB的平行线DC,
根据平行线的性质可以证明图③∠BDF+∠B=∠F;图④∠BDF+∠B=∠F.
相关试卷
这是一份《第7章平面直角坐标系》期末复习综合提升训练1(附答案)-2021-2022学年人教版七年级数学下册,共12页。试卷主要包含了在平面直角坐标系中,将点P,若点M,在平面直角坐标系中,已知点A,已知第二象限的点E,如图,A、B的坐标分别为,已知点P,如果点P,平面内不同的两点A等内容,欢迎下载使用。
这是一份《第8章二元一次方程组》期末复习综合提升训练2(附答案)-2021-2022学年人教版七年级数学下册,共11页。试卷主要包含了程大位《直指算法统宗》,方程组的解是,已知方程组,则x﹣y的值是,已知,则用含x的式子表示y为等内容,欢迎下载使用。
这是一份《第5章相交线与平行线》期末复习综合提升训练1(附答案)-2021-2022学年人教版七年级数学下册,共16页。