- 类型4题型5二次函数与三角形全等、相似有关的问题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版) 试卷 5 次下载
- 类型4题型6二次函数与等腰三角形有关的问题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版) 试卷 4 次下载
- 类型4题型8二次函数与平行四边形有关的问题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版) 试卷 4 次下载
- 类型4题型9二次函数与菱形有关的问题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版) 试卷 3 次下载
- 类型4题型10二次函数与矩形有关的问题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版) 试卷 3 次下载
类型4题型7二次函数与直角三角形有关的问题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版)
展开(1)若过点的直线是抛物线的对称轴.
①求抛物线的解析式;
②对称轴上是否存在一点,使点关于直线的对称点恰好落在对称轴上.若存在,请求出点的坐标;若不存在,请说明理由.
当,时,函数值的最大值满足,求的取值范围.
【答案】(1)①;②存在,或;(2).
【解析】
【分析】
(1)①根据抛物线的对称轴公式即可求出解析式;
②如图1,若点P在x轴上方,点B关于OP对称的点在对称轴上,连接、PB,根据轴对称得到,,求出点B的坐标,勾股定理得到,再根据,列出方程解答,同理得到点P在x轴下方时的坐标即可;
(2)当时,确定对称轴的位置,再结合开口方向,确定当时,函数的增减性,从而得到当x=2时,函数取最大值,再列出不等式解答即可.
【详解】
解:(1)①抛物线的对称轴为直线,
∴若过点的直线是抛物线的对称轴,
则,解得:b=4,
∴;
②存在,
如图1,若点P在x轴上方,点B关于OP对称的点在对称轴上,连接、PB,
则,,
对于,令y=0,则,
解得:,
∴A(-1,0),B(5,0),
∴,
∴,
∴,
设点P(2,m),
由可得:,解得:,
∴,
同理,当点P在x轴下方时,,
综上所述,点或
(2)∵抛物线的对称轴为直线,
∴当时,,
∵抛物线开口向下,在对称轴左边,y随x的增大而增大,
∴当时,取x=2,y有最大值,
即,
∴,解得:,
又∵,
∴.
【点睛】
本题考查了二次函数的综合应用,涉及了二次函数的图象与性质,以及勾股定理的应用,其中第(1)②问要先画出图形再理解,第(2)问运用到了二次函数的增减性,难度不大,解题的关键是熟记二次函数的图象与性质.
【典例2】如图,二次函数y=ax2+bx+4的图象与x轴交于点A(-1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E.垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,动直线l在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点.
(1)求出二次函数y=ax2+bx+4和BC所在直线的表达式;
(2)在动直线l移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标;
(3)连接CP,CD,在移动直线l移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与DCE相似,如果存在,求出点P的坐标,如果不存在,请说明理由.
【答案】(1)y=-x2+3x+4,y=-x+4;(2);(3)存在,
【解析】
【分析】
(1)运用待定系数法,利用A,B两点的坐标构建二元一次方程组求解二次函数的表达式,利用B,C两点的坐标确定直线BC的表达式;
(2)先求得DE的长,根据平行四边形的性质得到PF=DE,点P与点F的横坐标相同,故利用抛物线与直线的解析式表示它们的纵坐标,根据其差等于DE长构建一元二次方程求解;
(3)结合图形与已知条件,易于发现若两三角形相似,只可能存在△PCF∽△CDE一种情况.△CDE的三边均可求,(2)中已表示PF的长,再构建直角三角形或借助两点间距离公式,利用勾股定理表示出CF的长,这样根据比例式列方程求解,从而可判断点P是否存在,以及求解点P的值.
【详解】
(1)由题意,将A(-1.0),B(4.0)代入,得
,解得,
∴二次函数的表达式为,
当时,y=4,
∴点C的坐标为(0,4),又点B的坐标为(4,0),
设线段BC所在直线的表达式为,
∴,解得,
∴BC所在直线的表达式为;
(2)∵DE⊥x轴,PF⊥x轴,
∴DE∥PF,
只要DE=PF,此时四边形DEFP即为平行四边形.
由二次函数y=-+3+4=(-) 2+,得D的坐标为(,),
将代入,即y=-+4=,得点E的坐标为(,),
∴DE=-=,
设点P的横坐标为t,则P(t,-t2+3t+4),F(t,-t+4),
PF=-t2+3t+4-(-t+4)=-t2+4t,
由DE=PF,得-t2+4t=,
解之,得t1= (不合题意,舍去),t2=,
当t=时,-t2+3t+4=-()2+3×+4=,
∴P的坐标为(,);
(3)由(2)知,PF∥DE,
∴∠CED=∠CFP,
又∠PCF与∠DCE有共同的顶点C,且∠PCF在∠DCE的内部,
∴∠PCF≠∠DCE,
∴只有当∠PCF=∠CDE时,△PCF∽△CDE,
由D (,),C(0,4),E(,),利用勾股定理,可得
CE=,DE=,
由(2)以及勾股定理知,PF=-t2+4t,F(t,-t+4),
CF=,
∵△PCF∽△CDE,
∴,即,
∵t≠0,
∴()=3,
∴t=,
当t=时,-t2+3t+4=-()2+3×+4=.
∴点P的坐标是(,).
【点睛】
本题属于二次函数综合题,考查了一次函数的性质,二次函数的性质,相似三角形的判定和性质,平行四边形的判定和性质,勾股定理的应用等知识,解题的关键是,学会用数形结合的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.
【典例3】如图,抛物线与轴交于,两点(点在点的左侧),与轴交于点.直线与抛物线交于,两点,与轴交于点,点的坐标为.
(1)请直接写出,两点的坐标及直线的函数表达式;
(2)若点是抛物线上的点,点的横坐标为,过点作轴,垂足为.与直线交于点,当点是线段的三等分点时,求点的坐标;
(3)若点是轴上的点,且,求点的坐标.
【答案】(1),,直线的函数表达式为:;(2)当点是线段的三等分点时,点的坐标为或;(3)点的坐标为或.
【解析】
【分析】
(1)令可得两点的坐标,把的坐标代入一次函数解析式可得的解析式;
(2)根据题意画出图形,分别表示三点的坐标,求解的长度,分两种情况讨论即可得到答案;
(3)根据题意画出图形,分情况讨论:①如图,当点在轴正半轴上时,记为点.过点作直线,垂足为.再利用相似三角形与等腰直角三角形的性质,结合勾股定理可得答案,②如图,当点在轴负半轴上时,记为点.过点作直线,垂足为,再利用相似三角形与等腰直角三角形的性质,结合勾股定理可得答案.
【详解】
解:(1)令
,,
设直线的函数表达式为:,
把代入得:
解得:
直线的函数表达式为:.
(2)解:如图,根据题意可知,点与点的坐标分别为
,.
,
,
分两种情况:
①当时,得.
解得:,(舍去)
当时,.
点的坐标为
②当时,得.
解得:,(舍去)
当时,
点的坐标为.
当点是线段的三等分点时,点的坐标为或
(3)解:直线与轴交于点,
点坐标为.
分两种情况:
①如图,当点在轴正半轴上时,记为点.
过点作直线,垂足为.则,
,
.
即
.
又,,
.
连接,点的坐标为,点的坐标为,
轴
.
,.
.
.
点的坐标为.
②如图,当点在轴负半轴上时,记为点.过点作直线,垂足为,
则,
,.
.
即
.
又,,
..
由①可知,..
.
.
点的坐标为
点的坐标为或.
【点睛】
本题考查的是二次函数与轴的交点坐标,利用待定系数法求一次函数的解析式,平面直角坐标系中线段的长度的计算,同时考查了相似三角形的判定与性质,等腰直角三角形的性质,勾股定理的应用,特别是分类讨论的数学思想,掌握以上知识是解题的关键.
【典例4】如图1,排球场长为18m,宽为9m,网高为2.24m.队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88m.即BA=2.88m.这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2.
(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由;
(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:取1.4)
【答案】(1)这次发球过网,但是出界了,理由详见解析;(2)发球点O在底线上且距右边线0.1米处.
【解析】
【分析】
(1)求出抛物线表达式,再确定x=9和x=18时,对应函数的值即可求解;
(2)当y=0时,y=﹣(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),求出PQ=6=8.4,即可求解.
【详解】
(1)设抛物线的表达式为:y=a(x﹣7)2+2.88,
将x=0,y=1.9代入上式并解得:a=﹣,
故抛物线的表达式为:y=﹣(x﹣7)2+2.88;
当x=9时,y=﹣(x﹣7)2+2.88=2.8>2.24,
当x=18时,y=﹣(x﹣7)2+2.88=0.64>0,
故这次发球过网,但是出界了;
(2)如图,分别过点作底线、边线的平行线PQ、OQ交于点Q,
在Rt△OPQ中,OQ=18﹣1=17,
当y=0时,y=﹣(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),
∴OP=19,而OQ=17,
故PQ=6=8.4,
∵9﹣8.4﹣0.5=0.1,
∴发球点O在底线上且距右边线0.1米处.
【点睛】
此题考查求二次函数的解析式,利用自变量求对应的函数值的计算,勾股定理解直角三角形,二次函数的实际应用,正确理解题意,明确“能否过网”,“是否出界”词语的含义找到解题的方向是解答此题的关键.
类型6题型7与面积有关的探究题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版): 这是一份类型6题型7与面积有关的探究题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版),文件包含题型7与面积有关的探究题教师版doc、题型7与面积有关的探究题学生版doc等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。
类型4题型11二次函数与正方形有关的问题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版): 这是一份类型4题型11二次函数与正方形有关的问题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版),文件包含题型11二次函数与正方形有关的问题教师版doc、题型11二次函数与正方形有关的问题学生版doc等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
类型4题型10二次函数与矩形有关的问题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版): 这是一份类型4题型10二次函数与矩形有关的问题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版),文件包含题型10二次函数与矩形有关的问题教师版doc、题型10二次函数与矩形有关的问题学生版doc等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。