初中数学沪科版八年级下册18.1 勾股定理第1课时课时作业
展开
这是一份初中数学沪科版八年级下册18.1 勾股定理第1课时课时作业,共5页。试卷主要包含了1 勾股定理等内容,欢迎下载使用。
第18章 勾股定理18.1 勾股定理第1课时 勾股定理一、选择题1.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( ).A.8 B.4 C.6 D.无法计算2.若直角三角形的三边长分别为2,4,x,则x的值可能有( ).A.1个 B.2个C.3个 D.4个3.(无锡)如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B'处,两条折痕与斜边AB分别交于点E、F,则线段B'F的长为 ( )A. B. C. D.二、填空题4.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______.[来源:学科网ZXXK]5.如图,写出字母所代表的正方形面积,SA=____,SB=____.6.(易错题)一个直角三角形的三边长为三个连续偶数,则它的三边长分别为____.7.如图,在 Rt△ABC 中,∠C=90°,BC=3 cm,AC= 4 cm,按图中所示方法将△BCD沿BD折叠,使点C 落在AB边的C'点处,那么△ADC'的面积是 .三、解答题8.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a∶b=3∶4,c=75cm,求a、b; (2)若a∶c=15∶17,b=24,求△ABC的面积; (3)若c-a=4,b=16,求a、c; (4)若∠A=30°,c=24,求c边上的高hc; (5)若a、b、c为连续整数,求a+b+c. 9. (1)观察图①②并填写下表(图中每个小方格的边长为1): A的面积 (单位面积)B的面积 (单位面积)C的面积 (单位面积)图① 图② (2) 三个正方形A,B,C的面积之间有什么关系?(3) 三个正方形围成的一个直角三角形的三边长之间存在什么关系? 10.(讨论题)下面是数学课堂的一个学习片段,阅读后,请回答下面的问题:学习了勾股定理的有关内容后,张老师请同学们交流讨论这样一个问题:“已知直角三角形ABC的两边长分别为3和4,请你求出第三边长.”经片刻的思考与交流后,李明同学举手说:“第三边长是5.”王华同学说:“第三边长是.”还有一些同学也提出了不同的看法。(1)假如你也在课堂上,你对这两位同学的说法有什么意见?为什么?(2)通过上面数学问题的讨论,你有什么感受?(用一句话表示)
参考答案1.A.2.B. 3.B解析:根据折叠的性质可知CD=AC=3,B'C=BC=4,∠ACE=∠DCE,∠BCF=∠B'CF,CE⊥AB,∴B'D=4-3=1,∠DCE+∠B'CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF =CE,∠EFC=45°,∴∠BFC=∠B'FC=135°,∴∠B'FD=90°,∵,∴AC·BC=AB·CE.∵根据勾股定理可求得AB=5,∴,∴,,∴,∴.4.132cm. 5.625 144[来源:Zxxk.Com]6.6,8,107.解析:在图形的折叠问题中常利用方程思想求解.根据勾股定理,得出AB=5cm.又由已知得出BC´=BC=3cm,∠AC´D=90°.设C´D=x cm,则(4-x)2-x2=22,解得,,即△ADC´的面积是cm2.8.(1)a=45cm.b=60cm; (2)540; (3)a=30,c=34;(4)6; (5)12.9.分析:运用数方格的方法计算三个正方形的面积,注意用对称割补的方法将不完整的空格补齐,便于计算面积.解:(1)如下表:[来源:学,科,网]A的面积(单位面积)B的面积(单位面积)C的面积(单位面积)图①16925图②4913(2)三个正方形A,B,C的面积之间的关系为SA+SB=SC.(3)三个正方形围成的一个直角三角形的三边长之间的关系:直角三角形两直角边的平方和等于斜边的平方.10.解:(1)两位同学的说法都不完全正确,因为4既可作为直角边长又可作为斜边长.(2)解决问题时要考虑全面.(答案不唯一,回答合理即可)
相关试卷
这是一份沪科版八年级下册20.2 数据的集中趋势与离散程度第1课时同步练习题,共5页。试卷主要包含了数据的离散程度,某市测得一周的PM2,82等内容,欢迎下载使用。
这是一份数学第20章 数据的初步分析20.2 数据的集中趋势与离散程度第1课时同步练习题,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2020-2021学年第20章 数据的初步分析20.2 数据的集中趋势与离散程度第2课时练习,共2页。