高中数学人教版新课标B选修2-21.1.1函数的平均变化率教案设计
展开§1.1.1变化率问题
一、教学目标
1.感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程。体会数学的博大精深以及学习数学的意义。
2.理解平均变化率的意义,为后续建立瞬时变化率和导数的数学模型提供丰富的背景。
二、教学重点、难点
重点:平均变化率的实际意义和数学意义
难点:平均变化率的实际意义和数学意义
三、教学过程
一、问题情境
1.介绍数学历史文化知识,激发数学学习的兴趣
人们为了描述现实世界中运动、变化着的现象,在数学中引入了函数,用数刻画静态现象,用函数刻画动态现象。随着对函数的研究不断深化,17世纪中叶产生了微积分,这是数学发展历史上一个具有划时代意义的伟大创造。微积分的创立以自然科学中四类问题的处理直接相关:
一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等;
二、求曲线的切线;
三、求已知函数的最大值与最小值;
四、求长度、面积、体积和重心等。
导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。
导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度.
2、情境:
在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)= -4.9t2+6.5t+10.如何用运动员在某些时间段内的平均速度粗略地描述其运动状态?
二、学生活动
思考计算:和的平均速度
在这段时间里,;
在这段时间里,
探究:计算运动员在这段时间里的平均速度,并思考以下问题:
⑴运动员在这段时间内使静止的吗?
⑵你认为用平均速度描述运动员的运动状态有什么问题吗?
探究过程:如图是函数h(t)= -4.9t2+6.5t+10的图像,结合图形可知,,
所以,
虽然运动员在这段时间里的平均速度为,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态.
三、建构数学
1.上述问题中的变化率可用式子 表示, 称为函数f(x)从x1到x2的平均变化率
2.若设, (这里看作是对于x1的一个“增量”可用x1+代替x2,同样)
则平均变化率为
思考:观察函数f(x)的图象
平均变化率表示什么?
四、数学运用
例1.已知函数f(x)=的图象上的一点及临近一点,则 .
解:,
∴
例2、已知函数,分别计算在下列区间上的平均变化率:
(1)[1,3];
(2)[1,2];
(3)[1,1.1];
[1,1.001]。
(5) 求在附近的平均变化率。
解:,所以
所以在附近的平均变化率为
五、课堂练习
1、某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率。
T(月)
W(kg)
6
3
9
12
3.5
6.5
8.6
11
2、已知函数f(x)=2x+1,g(x)=—2x,分别计算在区间[-3,-1],[0,5]上f(x)及g(x)的平均变化率。
(发现:y=kx+b在区间[m,n]上的平均变化率有什么特点?)
六、回顾反思
1、平均变化率
一般的,函数在区间[x1,x2]上的平均变化率。
2、平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率“视觉化”.
七、作业
1.质点运动规律为,则在时间中相应的平均速度为 .
2.物体按照s(t)=3t2+t+4的规律作直线运动,求在4s附近的平均变化率.
人教版新课标B1.1.1函数的平均变化率教学设计: 这是一份人教版新课标B1.1.1函数的平均变化率教学设计,共4页。
人教版新课标B选修2-21.1.1函数的平均变化率教学设计及反思: 这是一份人教版新课标B选修2-21.1.1函数的平均变化率教学设计及反思,共5页。教案主要包含了设计意图,学生探索,归纳总结,学生探究,分析作答,学生探索1,学生探索2,获取新知等内容,欢迎下载使用。
高中数学人教版新课标A选修2-21.1变化率与导数教案设计: 这是一份高中数学人教版新课标A选修2-21.1变化率与导数教案设计,共4页。教案主要包含了求曲线的切线;,求已知函数的最大值与最小值;,求长度等内容,欢迎下载使用。