小学六年级典型竞赛题及讲解学案
展开
这是一份小学六年级典型竞赛题及讲解学案,共14页。
小学六年级典型竞赛题及讲解1.计数问题用1~9可以组成几个不含重复数字的三位数,如果再要求这三个数字中任何两个的差不能是1,那么可以组成几个满足要求的三位数?2.相遇问题甲、乙、丙三辆汽车在环形马路上同向行驶,甲车行一周要36分钟,乙车行一周要30分钟,丙车行一周要48分钟,三辆汽车同时从同一个起点出发,问至少要多少时间这三辆汽车才能同时又在起点相遇?3.排列组合红、黄、蓝、白四种颜色不同的小旗,各有2,2,3,3面,任意取出三面按顺序排成一行,表示一种信号,问:共可以表示多少种不同的信号?如果白旗不能打头又有多少种?4.小灵通淘气和爷爷同时从这里出发回家,淘气步行回去,爷爷在前的路程中乘车,车速是淘气步行速度的10倍.其余路程爷爷走回去,爷爷步行的速度只有淘气步行速度的一半,您猜一猜咱们爷孙俩谁先到家?5.桥长一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米?6.求边长一张硬纸板长60厘米,宽56厘米,现在需要把它剪成若干个大小相同的最大的正方形,不许有剩余。问正方形的边长是多少?7.粮食问题甲仓有粮80吨,乙仓有粮120吨,如果把乙仓的一部分粮调入甲仓,使乙仓存粮是甲仓的60%,需要从乙仓调入甲仓多少吨粮食?8.追击敌人我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?9.分数某学校的若干学生在一次数学考试中所得分数之和是8250分.第一、二、三名的成绩是88、85、80分,得分最低的是30分,得同样分的学生不超过3人,每个学生的分数都是自然数.问:至少有几个学生的得分不低于60分?10.行程问题甲、乙、丙三个班的学生租用一辆大 巴车一起去郊外活动,但大巴车只能搭载一个班的学生,于是计划先让甲班的学生坐车,乙、丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴 车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间? 11.分针与时针钟面上3时多少分时,分针与时针恰好重合?12.乒乓球比赛乒乓球比赛场地上,共有10张球桌同时进行比赛,有单打,也有双打,共有32名球员出场比赛。其中有几桌是单打,几桌是双打呢?13.工程实际工期一项工程,甲、乙两人合做8天可完成。甲单独做需12天完成。现两人合做几天后,余下的工程由乙独自完成,使乙前后两段所用时间比为1:3。这个工程实际工期为多少天?14.年龄趣题某个团队现有4个成员。他们的年龄各不相同,总和是129岁,其中有3个人的年龄是平方数。如果倒退15年,这4人中仍有3人的年龄是平方数。你知道他们各自的年龄吗?15.最大值自然数m除13511,13903和14589的余数都相同.则m的最大值是多少?16.最简分数从1,2,3,4,5,6,7,8中选出一些数(至少选一个,不能不选),使它们的和为4的倍数,一共有几种方法?17.汽车间隔王强骑自行车上班,以均匀速度行驶.他观察来往的公共汽车,发现每隔12分钟有一辆汽车从后面超过他,每隔4分钟迎面开来一辆,如果所有汽车都以相同的匀速行驶,发车间隔时间也相同,那么调度员每隔几分钟发一辆车?18.两地相距甲乙两人在A、B两地间往返散步,甲从A、乙从B同时出发;第一次相遇点距B处60 米。当乙从A处返回时走了10米第二次与甲相遇。A、B相距多少米?19.追击问题有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发20分钟,出发后1小时40分钟追上丙,那么甲出发后需多少分钟才能追上乙。20.相遇问题甲、乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇?21.火车过隧道某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?22.参加竞赛一次数学竞赛出了10道选择题,评分标准为:基础分10分,每道题答对得3分,答错扣1分,不答不得分.问:要保证至少有4人得分相同,至少需要多少人参加竞赛?23.互不相同将14个互不相同的自然数,从小到大依次排成一列。已知它们的总和是170;如果去掉最大的数及最小的数,那么剩下的总和是150.在原来排成的次序中,第二个数是多少?24.练习跑步甲、乙二人按顺时针方向沿着圆形跑道练习跑步,已知甲跑一圈要12分钟,乙跑一圈要15分钟,如果他们分别从圆形跑道直径的两端同时出发,那么出发后多少分钟甲追上乙?25.提水问题有一只小松鼠住在大森林里。他每天从住地出发,到河边提水回来。他提空桶行走的速度是每秒5米,提满桶行走的速度是每秒3米。提一趟水,来回共需8分钟。小松鼠的住地离河边有多远?26.工程问题有甲、乙两项工作,张师傅单独完成甲工作要9天,单独完成乙工作要12天.王师傅单独完成甲工作要3天,单独完成乙工作要15天.如果两人合作完成这两项工作,最少需要多少天?27.轮船轮船从A城到B城需行3天,而从B城到A城需行4天.从A城放一个无动力的木筏,它漂到B城需多少天?28.相遇时间两地相距900米,甲、乙二人同时、同地向同一方向行走,甲每分钟走80米,乙每分钟走100米,当乙到达目标后,立即返回,与甲相遇,从出发到相遇共经过多少分钟?29.整除求最小的自然数,它的各位数字之和等于56,它的末两位数是56,它本身还能被56所整除?30项数问题已知两列数: 2、5、8、11、……、2+(200-1)×3; 5、9、13、17、……、5+(200-1)×4。它们都是200项,问这两列数中相同的项数共有多少对? 参考答案1.答案与解析:1) 9×8×7=504个.2) 504-(6+5+5+5+5+5+5+6)×6-7×6=210个;(减去有2个数字差是1的情况,括号里8个数分别表示这2个数是12,23,34,45,56,67,78,89的情况,×6是对3个数字全排列,7×6是三个数连续的123、234、345、456、567、789这7种情况).2.答案与解析: 要求多少时间才能在同一起点相遇,这个时间必定同时是36、30、48的倍数。因为问至少要多少时间,所以应是36、30、48的最小公倍数。 36、30、48的最小公倍数是720。答:至少要720分钟(即12小时)这三辆汽车才能同时又在起点相遇。3.答案与解析:取出的3面旗子,可以是一种颜色、两种颜色、三种颜色,应按此进行分类第一类,一种颜色:都是蓝色的或者都是白色的,2种可能;第二类,两种颜色:(4×3)×3=36第三类,三种颜色:4×3×2=24所以,根据加法原理,一共可以表示2+36+24=62种不同的信号.(二)白棋打头的信号,后两面旗有4×4=16种情况.所以白棋不打头的信号有62-16=46种.4.答案与解析:不妨设爷爷步行的速度为“1”,则淘气步行的速度为“2”,车速则为“20”.到家需走的路程为“1”.有淘气到家所需时间为1÷2=0.5,爷爷到家所需时间为4/7÷20+3/7÷1=16/35.16/35<0.5,所以爷爷先到家。5.答案与解析: 火车过桥所用的时间是2分5秒=125秒,所走的路程是(8×125)米,这段路程就是(200米+桥长),所以,桥长为8×125-200=800(米)答:大桥的长度是800米。6.答案与解析: 硬纸板的长和宽的最大公约数就是所求的边长。60和56的最大公约数是4。答:正方形的边长是4厘米。7.答案与解析: ①甲仓有粮:(80+120)÷(1+60%)=125(吨).②从乙仓调入甲仓粮食:125-80=45(吨). 出三个正方形的边长是成比例缩小的,即为一个等比数列,而这个比就要用到相似三角形的知识点。这在以前讲沙漏原理或者三角形等积变形等专题的时候提到过。可以说是一道难度比较大的题。当然对于这种有特点8.答案与解析:是[10×(22-6)]千米,甲乙两地相距60千米。由此推知追及时间=[10×(22-6)+60]÷(30-10)=220÷20=11(小时)答:解放军在11小时后可以追上敌人。9.答案与解析:除得分88、85、80的人之外,其他人的得分都在30至79分之间,其他人共得分:8250-(88+85+80)=7997(分).为使不低于60分的人数尽量少,就要使低于60分的人数尽量多,即得分在30~59分中的人数尽量多,在这些分数上最多有3×(30+31+…+59)= 4005分(总分),因此,得60~79分的人至多总共得7997-4005=3992分.如果得60分至79分的有60人,共占分数3×(60+61+ …+ 79)= 4170,比这些人至多得分7997-4005= 3992分还多178分,所以要从不低于60分的人中去掉尽量多的人.但显然最多只能去掉两个不低于60分的(另加一个低于60分的,例如,178=60+60+58).因此,加上前三名,不低于60分的人数至少为61人.10.答案与解析:如图所示:虚线为学生步行部分,实线为大巴车行驶路段,由于大巴车的速度是学生的11倍,所以大巴车第一次折返点到出发点的距离是乙班学生搭车前步行距离的6倍,如果将乙班学生搭车前步行距离看作是一份的话,大巴车第一次折返点到出发点的距离为6份,大巴车第一次折返到接到乙班学生又行驶了5份距离,如此大巴车一共行驶了6+5+6+5+6=28份距离,而A到F的总距离为8千米,所以大巴车共行驶了28千米,所花的总时间为小时.(或者是各班各乘车6千米,步行2千米,所花的总时间为(小时))11.答案与解析:正3时时,分针在12的位置上,时针在3的位置上,两针相隔90°。当两针第一次重合,就是3时过多少分。在正3时到两针重合的这段时间内,分针要比时针多行走90°。而可知每分钟分针比时针多行走6-0.5=5.5(度)。相应的所用的时间就很容易计算出来了。解 360÷12×3= 90(度)小学六年级《分针与时针》奥数题及答案:90÷(6-0.5)= 90÷5.5≈16.36(分)答 两针重合时约为3时16.36分。12.答案与解析:单打每张球桌2人,双打每张球桌4人。如果10桌全是单打,出场的球员将只有20人。但是现在有32人出场,多12人。苏教版小学六年级奥数题及答案《乒乓球比赛》:每拿一桌单打换成双打,参赛的球员多出2人。要能多出12人,应该有6桌换成双打。答案是:6桌双打,4桌单打。这个单打双打问题,按照题型来看,属于传统的鸡兔同笼问题。上面所用的解法,也是鸡兔同笼问题的常规解法,先假定都是同一种,然后替换。也可利用中国古代解答鸡兔同笼问题时的“折半”法,算法更简单。每张球桌沿着中间的球网分成左右两半,只考虑左半边。单打的球桌左半边站1个人,双打的球桌左半边站2个人。10张球桌两边共站32个人,左半边共站16个人。13.答案:1614.答案与解析:因为4个人年龄可以倒退15年,所以,每个人的年龄都应大于15岁;因为他们的年龄总和是129,所以,年龄最大的也不会超129-3*(16+17+18)=78岁。有3个人的年龄是平方数。那么,这3个人的年龄只可能是16、25、36、49、64。最新的小学六年级奥数题及答案《年龄趣题》:在这5个数中,只有16、34减去15后,仍然还是一个数的平方数,所以,一定有1人是16岁,有1人是64岁。另外2人的年龄和是:129-16-64=49在这里有1人年龄是个平方数,而另一个人的年龄不低于16岁,经比较可知,一个人的年龄是25岁,最后一个人的年龄是24岁。经检验,24-15=9 9刚好是一个平方数,与题意相符。所以。他们4人年龄分别是:16、24、25、64。15.答案与解析:一个数除其他不同的数所得的余数相等,那么这个数一定能整除这些其他不同数的差,根据这个性质,解决这道题便迎刃而解了。由于m除13511,13903和14589的余数都相同,所以m整除13903-13511= 392;m整除14589-14903= 686;m整除14589 -13511=1078。所以,m一定是392、686、1078的公约教.要求m的最大值,就是求392,686,1078的最大公约数.人教版小学六年级奥数题及答案-最大值:因为392=7 ²×2 ³,686=7 ³×2,1078=7 ²×2×13所以(392,686,1078)= 7 ²×2=98即m的最大值为98.16.答案与解析:先从3,4,5,6,7,8中随便选几个(可以不选)。之后根据在3,4,5,6,7,8中选出数的和除以4的余数来决定选不选1,2,方法如下:若那个和除以4 余1则1,2都选;余2则选2不选1;余3则选1不选2;余0则都不选。这样总共有2的6次方共64种方法,但是其中有一种一个数都不选的方法,需要去掉,故满足条件的选法有63种。17.答案与解析:汽车间隔距离是相等的,列出等式为:(汽车速度-自行车速度)×12=(汽车速度+自行车速度)×4得出:汽车速度=自行车速度的2倍. 汽车间隔发车的时间=汽车间隔距离÷汽车速度=(2倍自行车速度-自行车速度)×12÷2倍自行车速度=6(分钟).18.答案与解析:“第一次相遇点距B处60 米”意味着乙走了60米和甲相遇,根据总结,两次相遇两人总共走了3个全程,一个全程里乙走了60,则三个全程里乙走了3×60=180米,第二次相遇是距A地10米。画图我们可以发现乙走的路程是一个全程多了10米,所以A、B相距=180-10=170米。19.答案与解析:由已知条件可知,乙用40分钟所走的路程与丙用50分钟所走的路程相等;甲用100分钟所走的路程与丙用130分钟所走的路程相等。故丙用130分钟所走的路程,乙用了40×(130÷50)=104 (分钟),即甲用100分钟走的路程,乙用104分钟走完。多用4分钟,由于甲比乙晚出发20分钟,所以甲出发500分钟才能追上乙。20.答案与解析:出发时甲、乙二人相距30千米,以后两人的距离每小时都缩短6+4=10(千米),即两人的速度的和(简称速度和),所以30千米里有几个10千米就是几小时相遇.解:30÷(6+4)=30÷10=3(小时)21.答案与解析:根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒)某列车的速度为:(250-210)÷(25-23)=40÷2=20(米/秒)某列车的车长为:20×25-250=500-250=250(米)两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒)22.答案与解析:由题目条件这次数学竞赛的得分可以从10-10=0 分到10+3×10=40 分,但注意到39、38、35这3个分数是不可能得到的,要保证至少有4人得分相同,至少需要3×(41-3)+1=115 人.23.答案:7。详解:最大数与最小数之和为20,故最大数不会超过19。从大到小排列,剩下的数依次不会超过18、17、16……7。而由于7+8+……+18=150,小学生六年级奥数题及答案《互不相同》:由题意有剩下的12个数之和恰为150,于是这12个数只能取上面的情形。在原来的次序中,第二个数为7。注:这道题是按自然数是1解答的。之前我国中、小学数学教学中,都把自然数等同于正整数,最小的自然数是1.近年来,由于和国际接轨,我国把自然数的定义修订为非负整数,因此,最小的自然数是0。24.答案与解析:可以假设圆形跑道的长为120米,那么甲的速度为120÷12=10(米/分),乙的速度为120÷15=8(米/分),如果他们分别从圆形跑道直径的两端同时出发,他们在圆形跑道上的距离为60米,甲追上乙需要的时间为60÷(10-8)=30(分钟).另解:因为乙跑一圈要15分钟,所以把15分钟看作一个单位进行考虑,在15分钟内,乙跑了一圈,甲跑了5/4圈,甲比乙多跑了1/4圈,而开始时甲、乙两人相距半圈,所以需要2个15分钟,也就是30分钟后甲可以追上乙.25.答案与解析:提空桶行走的速度∶提满桶行走的速度=5∶3。从反比关系得到提空桶行走的时间∶提满桶行走的时间=3∶5。来回一趟共计用8分钟,刚好8=3+5,所以提空桶行走的时间=3分钟=180秒。25.答案与解析:根据题意知道,知道王师傅完成甲工作的时间少,张师傅完成乙工作的时间少,所以分配任务时,让王师傅做甲工作,张师傅做乙工作,然后两人再合作干乙工作.26.答案与解析:解:分配任务,王师傅完成甲工作的时间少,先做3天甲工作,就完成了,张师傅完成乙工作的时间少,先做3天乙工作。 5×180=900(米)。蓝精灵的住地到河边的距离是900米。27.答案与解析:轮船顺流用3天,逆流用4天,说明轮船在静水中行4-3=1(天),等于水流3+4=7(天),即船速是流速的7倍.所以轮船顺流行3天的路程等于水流3+3×7=24(天)的路程,即木筏从A城漂到B城需24天.28.答案与解析:甲、乙二人开始是同向行走,乙走得快,先到达目标.当乙返回时运动的方向变成了相向而行,把相同方向行走时乙用的时间和返回时相向而行的时间相加,就是共同经过的时间.乙到达目标时所用时间:900100=9(分钟),甲9分钟走的路程:80*9=720(米),甲距目标还有:900-720=180(米),相遇时间:180(100+80)=1(分钟),共用时间:9+1=10(分钟).另解:观察整个行程,相当于乙走了一个全程,又与甲合走了一个全程,所以两个人共走了两个全程,所以从出发到相遇用的时间为:900*2(100+80)=10分钟.29.答案与解析:根据此数的末两位数是56,设所求的数写成100a+56由于100a+56能被56整除,所以100a是56的倍数100是4的倍数,所以a能被14整除,所以a应是14的倍数此数的数字和等于56,后两位为5+6=11所以a的数字和等于56-11=45具有数字和45的最小偶数是199998,但这个数不能被7整除数字和为45的偶数还可以是289998和298998但前者不能被7除尽,后者能被7整除所以本题的答数就是29899856.30.答案与解析:易知第一个这样的数为5,注意在第一个数列中,公差为3,第二个数列中公差为4,也就是说,第二对数减5即是3的倍数又是4的倍数,这样所求转换为求以5为首项,公差为12的等差数的项数,5、17、29、……,由于第一个数列最大为2+(200-1)×3=599;第二数列最大为5+(200-1)×4=801。新数列最大不能超过599,又因为5+12×49=593,5+12×50=605,所以共有50对。
相关学案
这是一份人教版六年级下册5 数学广角 (鸽巢问题)导学案,共12页。
这是一份小学六年“可能性”易错题讲解及专项训练(十四)学案,共5页。
这是一份小学六年图形与几何易错题讲解及专项训练(八)学案,共7页。