- 专题4.3大题好拿分必做解答30题(基础版)-2021-2022学年七年级数学下学期期中考试高分直通车【北师大版】 试卷 2 次下载
- 专题4.4小题易丢分必做选择30题(提升版)-2021-2022学年七年级数学下学期期中考试高分直通车【北师大版】 试卷 2 次下载
- 专题4.5小题易丢分必做填空30题(提升版)-2021-2022学年七年级数学下学期期中考试高分直通车【北师大版】 试卷 3 次下载
- 专题4.6大题易丢分必做解答30题(提升版)-2021-2022学年七年级数学下学期期中考试高分直通车【北师大版】 试卷 2 次下载
- 专题4.7小题能力提升考前必做30题(压轴篇)-2021-2022学年七年级数学下学期期中考试高分直通车【北师大版】 试卷 3 次下载
专题4.8大题能力提升考前必做30题(压轴篇)-2021-2022学年七年级数学下学期期中考试高分直通车【北师大版】
展开2021-2022学年七年级数学下学期期中考试高分直通车【北师大版】
专题4.8大题能力提升考前必做30题(压轴篇)
姓名:__________________ 班级:______________ 得分:_________________
注意事项:
本试卷试题共30题,解答30道 .答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.
1.(2020•黄岩区模拟)已知:(x﹣1)(x+3)=ax2+bx+c,求代数式9a﹣3b+c的值.
2.(2020秋•绿园区期末)某公司门前一块长为(6a+2b)米,宽为(4a+2b)米的长方形空地要铺地砖,如图所示,空白的甲、乙两正方形区域是建筑物,不需要铺地砖.两正方形区域的边长均为(a+b)米.
(1)求铺设地砖的面积是多少平方米;
(2)当a=2,b=3时,需要铺地砖的面积是多少?
(3)在(2)的条件下,某种道路防滑地砖的规格是:正方形,边长为0.2米,每块1.5元,不考虑其他因素,如果要购买此种地砖,需要 元钱.
3.(2020秋•宝鸡期末)定义一种新运算:观察下列各式:
1⊙3=1×4+3=7,
3⊙(﹣1)=3×4﹣1=11,
5⊙4=5×4+4=24,
4⊙(﹣3)=4×4﹣3=13.
(1)请你想一想:a⊙b= ;
(2)若a≠b,那么a⊙b b⊙a(填“=”或“≠”);
(3)先化简,再求值:(a﹣b)⊙(2a+b),其中a=﹣1,b=2.
4.(2016秋•路北区期中)红枣丰收了,为了运输方便,小华的爸爸打算把一个长为(a+2b)cm、宽为(a+b)cm的长方形纸板制成一个有底无盖的盒子,在长方形纸板的四个角各截去一个边长为bcm的小正方形,然后沿折线折起即可,如图所示,现将盒子的外表面贴上彩色花板.
(1)则至少需要彩纸的面积是多少?
(2)当a=8,b=6时,求至少需要彩纸的面积是多少?
5.(2020秋•浦东新区期中)完全平方公式:(a±b)2=a2±2ab+b2适当的变形,可以解决很多的数学问题.
例如:若a+b=3,ab=1,求a2+b2的值.
解:因为a+b=3,
所以(a+b)2=9,即:a2+2ab+b2=9,
又因为ab=1
所以a2+b2=7
根据上面的解题思路与方法,解决下列问题:
(1)若x+y=8,x2+y2=40,求xy的值;
(2)填空:①若(4﹣x)x=3,则(4﹣x)2+x2= .
②若(4﹣x)(5﹣x)=8,则(4﹣x)2+(5﹣x)2= .
(3)如图,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB=6,两正方形的面积和S1+S2=18,求图中阴影部分面积.
6.(2020春•双流区校级期末)两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1.若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.
(1)用含a、b的代数式分别表示S1、S2.
(2)若a+b=9,ab=21,求S1+S2的值;
(3)当S1+S2=30时,求出图3中阴影部分的面积S3.
7.(2019春•西湖区校级月考)设a,b是实数,定义关于“△”的一种运算如下:a△b=(a﹣b)2﹣(a+b)2.
(1)小聪通过计算发现a△b=﹣4ab,请说明它成立的理由.
(2)利用以上信息,解决问题:已知x3,求(x)4的值.
(3)请判断等式(a△b)△c=a△(b△c)是否成立?并说明理由.
8.(2019春•西湖区校级月考)把几个图形拼成一个图形,再通过图形面积的计算,常常可以得到一些有用的信息,或可以求出一些不规则图形的面积.
(1)如图1所示,将一张长方形纸板按图中虚线载剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>N,观察图形,利用面积的不同表示方法,可以发现一个代数恒等式 .
(2)将图2中边长为a和b的正方形拼在一起,B,C,G三点在同一条线上,连接BD和BF,若这两个正方形的边长满足a+b=8,ab=12,请求出阴影部分的面积.
(3)若图1中每块小长方形的面积为12.5cm2,四个正方形的面积和为48cm2,试求图中所有裁剪线(虚线部分)长之和.
9.(2019春•西湖区校级月考)如图,直线AB,CD被直线EF,MN所截.
(1)若AB∥CD,EF∥MN,∠1=115°,试求∠3和∠4的度数;
(2)本题隐含着一个规律,请你根据(1)的结果填空:如果一个角的两边分别和另一个角的两边平行,那么这两个角 ;
(3)利用(2)的结论解答:如果两个角的两边分别平行,其中一个角是另一个角的2倍,求这两个角的度数.
10.(2020春•吴兴区期末)如图,现有一块含有30°的直角三角板ABC,且l1∥l2,其中∠ABC=30°.
(1)如图(1),当直线l1和l2分别过三角板ABC的两个顶点时,且∠1=35°,则∠2= °.
(2)如图(2),当∠ADE=80°时,求∠GFB的度数.
(3)如图(3),点Q是线段CD上的一点,当∠QFC=2∠CFN时,请判断∠ADE和∠QFG的数量关系,并说出理由.
11.(2020春•萧山区期末)小明同学在完成七年级下册数学第1章的线上学习后,遇到了一些问题,请你帮他解决一下.
(1)如图1,已知AB∥CD,则∠AEC=∠BAE+∠DCE成立吗?请说明理由.
(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.BE、DE所在直线交于点E,若∠FAD=50°,∠ABC=40°,求∠BED的度数.
(3)将图2中的线段BC沿DC所在的直线平移,使得点B在点A的右侧,若∠FAD=m°,∠ABC=n°,其他条件不变,得到图3,请你求出∠BED的度数(用含m,n的式子表示).
12.(2020春•孟村县期末)如图1,已知直线CD∥EF,点A、B分别在直线CD与EF上.P为两平行线间一点.
(1)若∠DAP=40°,∠FBP=70°,则∠APB= .
(2)猜想∠DAP,∠FBP,∠APB之间有什么关系?并说明理由.
(3)利用(2)的结论解答:
①如图2,AP1、BP1分别平分∠DAP、∠FBP,请你写出∠P与∠P1的数量关系,并说明理由.
②如图3,AP2、BP2分别平分∠CAP、∠EBP,若∠APB=β,求∠AP2B(用含β的代数式表示).
13.(2020春•青川县期末)问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.
小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.
(1)按小明的思路,易求得∠APC的度数为 度;
(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;
(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出∠APC与α、β之间的数量关系.
14.(2014•赤峰)如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.
(1)探究猜想:
①若∠A=30°,∠D=40°,则∠AED等于多少度?
②若∠A=20°,∠D=60°,则∠AED等于多少度?
③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.
(2)拓展应用:
如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).
15.(2020春•武昌区期末)如图1,AB∥CD,点E在AB上,点H在CD上,点F在直线AB,CD之间,连接EF,FH,∠AEF+∠CHF∠EFH.
(1)直接写出∠EFH的度数为 ;
(2)如图2,HM平分∠CHF,交FE的延长线于点M,证明:∠FHD﹣2∠FMH=36°;
(3)如图3,点P在FE的延长线上,点K在AB上,点N在∠PEB内,连NE,NK,NK∥FH,∠PEN=2∠NEB,则2∠FHD﹣3∠ENK的值为 .
16.(2020秋•南岗区期末)已知:直线GH分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,并且EM∥FN.
(1)如图1,求证:AB∥CD;
(2)如图2,∠AEF=2∠CFN,在不添加任何辅助线的情况下,请直接写出图2中四个角,使写出的每个角的度数都为135°.
17.(2020春•广陵区校级期中)若x满足(5﹣x)(x﹣2)=2,求(x﹣5)2+(2﹣x)2的值.
解:设5﹣x=a,x﹣2=b,则(5﹣x)(x﹣2)=ab=2,a+b=(5﹣x)+(x﹣2)=3,
所以(x﹣5)2+(2﹣x)2=(5﹣x)2+(x﹣2)2=a2+b2=(a+b)2﹣2ab=32﹣2×2=5.
请运用上面的方法求解下面的问题:
(1)若x满足(8﹣x)(x﹣2)=5,求(8﹣x)2+(x﹣2)2的值;
(2)已知正方形ABCD的边长为x,E、F分别是AD、DC上的点,且AE=1,CF=3,长方形EMFD的面积是35,求长方形EMFD的周长.
18.(2020春•徐州期中)已知(ax)y=a6,(ax)2÷ay=a3
(1)求xy和2x﹣y的值;
(2)求4x2+y2的值.
19.(2020春•江阴市期中)(1)已知m+4n﹣3=0,求2m•16n的值.
(2)已知n为正整数,且x2n=4,求(x3n)2﹣2(x2)2n的值.
20.(2021春•邗江区月考)规定两数a,b之间的一种运算,记作(a,b);如果ac=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.
(1)根据上述规定,填空:
①(5,125)= ,(﹣2,﹣32)= ;
②若,则x= .
(2)若(4,5)=a,(4,6)=b,(4,30)=c,试说明下列等式成立的理由:a+b=c.
21.(2020秋•香坊区期末)如图1是长方形纸带,将长方形ABCD沿EF折叠成图2,使点C、D分别落在点C1、D1处,再沿BF折叠成图3,使点C1、D1分别落在点C2、D2处.
(1)若∠DEF=20°,求图1中∠CFE的度数;
(2)在(1)的条件下,求图2中∠C1FC的度数;
(3)在图3中写出∠C2FE、∠EGF与∠DEF的数量关系,并说明理由.
22.(2020春•江都区月考)如图,AB∥CD,定点E,F分别在直线AB,CD上,平行线AB,CD之间有一动点P.
(1)如图1,当P点在EF的左侧时,∠AEP,∠EPF,∠PFC满足数量关系为 ,如图2,当P点在EF的右侧时,∠AEP,∠EPF,∠PFC满足数量关系为 .
(2)如图3,当∠EPF=90°,FP平分∠EFC时,求证:EP平分∠AEF;
(3)如图4,QE,QF分别平分∠PEB和∠PFD,且点P在EF左侧.
①若∠EPF=60°,则∠EQF= ;
②猜想∠EPF与∠EQF的数量关系,并说明理由.
23.(2020春•淮安区期末)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:
第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,
第n次操作,分别作∠ABEn﹣1和∠DCEn﹣1的平分线,交点为En.
(1)如图①,已知∠ABE=50°,∠DCE=25°,则∠BEC= °;
(2)如图②,若∠BEC=140°,求∠BE1C的度数;
(3)猜想:若∠BEC=α度,则∠BEnC= °.
24.(2020春•六盘水期末)2019年,果农小林家的刺梨喜获丰收.在销售过程中,刺梨的销售额y(元)与销量x(千克)满足如下关系:
销售x(千克) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
销售额y(元) | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
(1)上表这个变化过程中,自变量是 ,因变量是 ;
(2)刺梨的销售额y(元)与销量x(千克)之间的关系式为 ;
(3)当刺梨销量为50千克时,销售额是多少元?
25.(2020春•文山州期末)一辆汽车油箱内有油54L,这辆汽车从某地出发,每行驶1km,耗油0.09L.若设油箱内剩油量为y(L),行驶路程为x(km),y随x的变化而变化如表:
行驶路程为x/km | 100 | 200 | 300 | 400 |
油箱内剩油量为y/L | 45 | 36 | 27 | 18 |
(1)在上述变化过程中,自变量是 ,因变量是 ;
(2)试写出y与x之间的关系式;
(3)这辆汽车行驶450km时剩油多少升?汽车剩油9L时,行驶了多少千米?
26.(2020春•锦江区期末)在疫情期间,某口罩生产厂为提高生产效益引进了新的设备,其中甲表示新设备的产量y(万个)与生产时间x(天)的关系,乙表示旧设备的产量y(万个)与生产时间x(天)的关系:
(1)由图象可知,新设备因工人操作不当停止生产了 天;
(2)求新、旧设备每天分别生产多少万个口罩?
(3)在生产过程中,x为何值时,新旧设备所生产的口罩数量相同.
27.(2020春•雅安期末)已知动点P以1cm/s的速度沿图①的边框按B→C→D→E→F→A的路径运动,△ABP的面积S随时间t的变化如图②,若AB=4cm,试回答下列问题:
(1)图①中BC长是多少?
(2)图②中a是多少?
(3)图①的图形的面积是多少?
28.(2020春•闽侯县期中)某天早晨,王老师从家出发步行前往学校,途中在路边一饭店吃早餐,如图所示是王老师从家到学校这一过程中的所走路程s(米)与时间t(分)之间的关系.
(1)学校离他家 米,从出发到学校,王老师共用了 分钟;王老师吃早餐用了 分钟?
(2)观察图形直接回答王老师吃早餐以前的速度快还是吃完早餐以后的速度快?
(3)求出王老师吃完早餐后的平均速度是多少?
29.(2020春•龙泉驿区期中)如图表示的是汽车在行驶的过程中,速度随时间变化而变化的情况.
(1)汽车从出发到最后停止共经过了多少时间?它的最高时速是多少?
(2)汽车在那些时间段保持匀速行驶?时速分别是多少?
(3)出发后8分到10分之间发生了什么情况?
(4)用自己的语言大致描述这辆汽车的行驶情况.
30.(2020春•青白江区期末)有研究表明,声音在空气中的传播速度与空气的温度有关,当空气的温度变化,声音的传播速度也将随着变化.声音在空气中传播速度与空气温度关系一些数据(如下表格)
温度/℃ | … | ﹣20 | ﹣10 | 0 | 10 | 20 | 30 | … |
声速/(m/s) | … | 318 | 324 | 330 | 336 | 342 | 348 | … |
(1)指出在这个变化过程中的自变量和因变量;
(2)当声音在空气中传播速度为342m/s时,此时空气的温度是多少?
(3)该数据表明:空气的温度每升高10℃,声音的传播速度将增大(或减少)多少?
(4)用y表示声音在空气中的传播速度,x表示空气温度,根据(3)中你发现的规律,直接写出y与x之间的关系式.
专题4.8大题能力提升考前必做30题(压轴篇)-2021-2022学年八年级数学下学期期中考试高分直通车【北师大版】: 这是一份专题4.8大题能力提升考前必做30题(压轴篇)-2021-2022学年八年级数学下学期期中考试高分直通车【北师大版】,文件包含专题48大题能力提升考前必做30题压轴篇-2021-2022学年八年级数学下学期期中考试高分直通车解析版北师大版docx、专题48大题能力提升考前必做30题压轴篇-2021-2022学年八年级数学下学期期中考试高分直通车原卷版北师大版docx等2份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。
专题4.7小题能力提升考前必做30题(压轴篇)-2021-2022学年八年级数学下学期期中考试高分直通车【北师大版】: 这是一份专题4.7小题能力提升考前必做30题(压轴篇)-2021-2022学年八年级数学下学期期中考试高分直通车【北师大版】,文件包含专题47小题能力提升考前必做30题压轴篇-2021-2022学年八年级数学下学期期中考试高分直通车解析版北师大版docx、专题47小题能力提升考前必做30题压轴篇-2021-2022学年八年级数学下学期期中考试高分直通车原卷版北师大版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
专题4.7小题能力提升考前必做30题(压轴篇)-2021-2022学年七年级数学下学期期中考试高分直通车【北师大版】: 这是一份专题4.7小题能力提升考前必做30题(压轴篇)-2021-2022学年七年级数学下学期期中考试高分直通车【北师大版】,文件包含专题47小题能力提升考前必做30题压轴篇-2021-2022学年七年级数学下学期期中考试高分直通车解析版北师大版docx、专题47小题能力提升考前必做30题压轴篇-2021-2022学年七年级数学下学期期中考试高分直通车原卷版北师大版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。