- 专题06 空间点、线与面的位置关系(课时训练)-【教育机构专用】2022年春季高一数学辅导讲义(新教材人教A版2019) 试卷 0 次下载
- 专题06 空间点、线与面的位置关系(重难点突破)-【教育机构专用】2022年春季高一数学辅导讲义(新教材人教A版2019) 其他 0 次下载
- 专题07 空间直线与平面与平面与平面的平行(课时训练)-【教育机构专用】2022年春季高一数学辅导讲义(新教材人教A版2019) 试卷 0 次下载
- 专题08 空间直线与平面、平面与平面的垂直(课时训练)-【教育机构专用】2022年春季高一数学辅导讲义(新教材人教A版2019) 试卷 1 次下载
- 专题08 空间直线与平面与平面与平面的垂直(重难点突破)-【教育机构专用】2022年春季高一数学辅导讲义(新教材人教A版2019) 其他 0 次下载
专题07 空间直线与平面、平面与平面的平行(重难点突破)-【教育机构专用】2022年春季高一数学辅导讲义(新教材人教A版2019)
展开专题07 空间直线与平面、平面与平面的平行
一、考清分析
二、考点梳理
考点一 直线与平面平行的判定定理和性质定理
| 文字语言 | 图形语言 | 符号语言 |
判定定理 | 平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(线线平行⇒线面平行) | ∵l∥a,a⊂α, l⊄α,∴l∥α | |
性质定理 | 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(线面平行⇒线线平行) | ∵l∥α,l⊂β,α∩β=b,∴l∥b |
考点二 平面与平面平行的判定定理和性质定理
| 文字语言 | 图形语言 | 符号语言 |
判定定理 | 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(线面平行⇒面面平行) | ∵a∥β,b∥β,a∩b=P,a⊂α,b⊂α,∴α∥β | |
性质定理 | 如果两个平行平面同时和第三个平面相交,那么它们的交线平行 | ∵α∥β,α∩γ=a,β∩γ=b,∴a∥b |
四、题型分析
重难点题型突破1 线面平行
例1. (1)(福建省龙岩一中2019届期末)若直线l不平行于平面α,且l⊄α,则( )
A.α内的所有直线与l异面
B.α内不存在与l平行的直线
C.α与直线l至少有两个公共点
D.α内的直线与l都相交
(2).(云南省曲靖一中2019届期末)如图所示的三棱柱ABC-A1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是( )
A.异面 B.平行
C.相交 D.以上均有可能
【变式训练1-1】、如图,四边形ABCD是平行四边形,AF∥DE,DE=2AF.求证:AC∥平面BEF.
例2.(江西省吉安一中2019届期中)如图,ABCD与ADEF均为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:
(1)BE∥平面DMF;
(2)平面BDE∥平面MNG.
【变式训练2-1】、(江西省景德镇一中2019届质检)已知四棱锥P-ABCD的底面ABCD是平行四边形,侧面PAB⊥平面ABCD,E是棱PA的中点.
(1)求证:PC∥平面BDE;
(2)平面BDE分此棱锥为两部分,求这两部分的体积比.
重难点题型突破2 面面平行
例3、(2020年南通学情调研)如图,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:
(1)B,C,H,G四点共面;
(2)平面EFA1∥平面BCHG.
【变式训练3-1】、如图所示,四边形ABCD与四边形ADEF都为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:
(1) BE∥平面DMF;
(2) 平面BDE∥平面MNG.
【变式训练3-2】、如图,在四棱锥PABCD中,底面ABCD为矩形,F是AB的中点,E是PD的中点.
(1) 证明:PB∥平面AEC;
(2) 在PC上求一点G,使FG∥平面AEC,并证明你的结论.