专题19 指数函数与对数函数(能力测评卷)-2021-2022学年高一数学单元复习(人教A版2019必修第一册)
展开
这是一份专题19 指数函数与对数函数(能力测评卷)-2021-2022学年高一数学单元复习(人教A版2019必修第一册),共11页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
章末检测(四) 指数函数与对数函数 能力卷(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数f(x)为奇函数,且x≥0时,f(x)=2x+x+m,则f(-1)=( C )A.- B. C.-2 D.2【答案】C【解析】因为函数f(x)为奇函数,所以f(0)=0,即20+0+m=0,所以m=-1,f(x)=2x+x-1(x≥0).因为f(-1)=-f(1),f(1)=2,所以f(-1)=-2.2.已知关于x的不等式()x-4>3-2x,则该不等式的解集为( B )A.[4,+∞) B.(-4,+∞)C.(-∞,-4) D.(-4,1]【答案】B【解析】依题意可知,原不等式可转化为3-x+4>3-2x,由于指数函数y=3x为增函数,所以-x+4>-2x,解得x>-4,故选B.3.设函数f(x)=log2x,若f(a+1)<2,则a的取值范围为( A )A.(-1,3) B.(-∞,3)C.(-∞,1) D.(-1,1)【答案】A【解析】∵函数f(x)=log2x在定义域内单调递增,f(4)=log24=2,∴不等式f(a+1)<2等价于0<a+1<4,解得-1<a<3,故选A.4.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上是增函数,令a=f(1),b=f(2-0.3),c=f(-20.3),则( A )A.b<a<c B.c<b<aC.b<c<a D.a<b<c【答案】A【解析】因为函数f(x)是定义在R上的偶函数,所以c=f(-20.3)=f(20.3).又因为y=2x是R上的增函数.所以0<2-0.3<1<20.3.由于函数f(x)在区间[0,+∞)上是增函数,所以f(2-0.3)<f(1)<f(20.3)=f(-20.3),即b<a<c.5.已知f(x)=是R上的减函数,那么a的取值范围是( B )A.(0,1) B.[,)C.(0,) D.(,)【答案】B【解析】由题意得解得≤a<,故选B.6.已知m,n∈(1,+∞),且m>n,若logmn2+lognm6=13,则函数f(x)=的大致图象为( A )【答案】A【解析】由题意,令t=logmn,则2t+=13,解得t=或t=6(舍去),所以n=,即=1,所以f(x)=的大致图象为A中的图象.7.若函数f(x)=(-x2+4x+5)在区间(3m-2,m+2)内单调递增,则实数m的取值范围为( C )A.[,3] B.[,2]C.[,2) D.[,+∞)【答案】C【解析】先保证对数有意义即-x2+4x+5>0,解得-1<x<5,又可得二次函数y=-x2+4x+5的对称轴为x=-=2,由复合函数单调性可得函数f(x)=(-x2+4x+5)的单调递增区间为(2,5),要使函数f(x)=(-x2+4x+5)在区间(3m-2,m+2)内单调递增,只需解得≤m<2.8.某企业2018年全年投入研发资金150万元,为激励创新,该企业计划今后每年投入的研发资金比上年增长8%,则该企业全年投入的研发资金开始超过200万元的年份是( C )(参考数据:lg 1.08≈0.033,lg 2≈0.301,lg 3≈0.477)A.2020 B.2021C.2022 D.2023【答案】C【解析】该企业全年投入的研发资金开始超过200万元的年份为n,则150×(1+8%)n-2018>200,则n>2018+≈2021.8,所以n=2022.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分)9.下列函数中,是奇函数且存在零点的是( AD )A.y=x3+x B.y=log2xC.y=2x2-3 D.y=x|x|【答案】AD【解析】A中,y=x3+x为奇函数,且存在零点x=0,与题意相符;B中,y=log2x为非奇非偶函数,与题意不符;C中,y=2x2-3为偶函数,与题意不符;D中,y=x|x|是奇函数,且存在零点x=0,与题意相符,故选AD.10.下列函数中值域为R的有( ABD )A.f(x)=3x-1 B.f(x)=lg(x2-2)C.f(x)= D.f(x)=x3-1【答案】ABD【解析】f(x)=3x-1为增函数,函数的值域为R,满足条件.B.由x2-2>0得x>或x<-,此时f(x)=lg(x2-2)的值域为R,满足条件.C.f(x)=当x>2时,f(x)=2x>4,当0≤x≤2时,f(x)=x2∈[0,4],即函数的值域为[0,+∞),不满足条件.D.f(x)=x3-1是增函数,函数的值域为R,满足条件.11.若函数f(x)=在R上单调递增,则实数a的取值范围不能为( BD )A.(5,8) B.(2,8)C.[6,8) D.(3,8)【答案】BD【解析】因为函数f(x)=是R上的增函数,所以解得4≤a<8.12.设函数f(x)=若f(x)-b=0有三个不等实数根,则b可取的值有( BC )A.1 B.2C.3 D.4【答案】BC【解析】作出函数f(x)=的图象如图:f(x)-b=0有三个不等实数根,即函数y=f(x)的图象与y=b有3个不同交点,由图可知,b的取值范围是(1,3],故b可取2,3.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.函数f(x)=ax(a>0,a≠1)的反函数g(x)过点(9,2),则f(2)=__9__.【答案】9【解析】由函数y=ax(a>0,且a≠1)的反函数的图象过点(9,2),可得:y=ax图象过点(2,9),所以a2=9,又a>0,所以a=3.所以f(2)=32=9.14.已知函数f(x)=为定义在区间[-2a,3a-1]上的奇函数,则a=__1__,b=__1__.【答案】1 1【解析】因为f(x)是定义在[-2a,3a-1]上的奇函数,所以定义域关于原点对称,即-2a+3a-1=0,所以a=1,因为函数f(x)=为奇函数,所以f(-x)===-,即b·2x-1=-b+2x,所以b=1.15.已知图象连续不断的函数y=f(x)在区间(0.2,0.6)内有唯一的零点,如果用二分法求这个零点的近似值(精确度为0.01),则应将区间(0.2,0.6)至少等分的次数为__6__.【答案】6【解析】由<0.01,得2n>=40,故n的最小值为6.16.某地野生薇甘菊的面积与时间的函数关系的图象如图所示,假设其关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生薇甘菊的面积就会超过30 m2;③设野生薇甘菊蔓延到2 m2,3 m2,6 m2所需的时间分别为t1,t2,t3,则有t1+t2=t3;④野生薇甘菊在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度.其中正确的说法有__①②③__(请把正确说法的序号都填在横线上).【答案】①②③【解析】∵其关系为指数函数,图象过点(4,16),∴指数函数的底数为2,故①正确;当t=5时,S=32>30,故②正确;∵t1=1,t2=log23,t3=log26,∴t1+t2=t3,故③正确;根据图象的变化快慢不同知④不正确,综上可知①②③正确.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)(1)计算3log32++lg 50+lg 2;(2)已知2a=3,4b=6,求2b-a的值.【解析】(1)3 log32++lg 50+lg 2=2+3+lg 100=2+3+2=7.(2)由2a=3,得a=log23,又由4b=6,即22b=6,得2b=log26,所以2b-a=log26-log23=log22=1.18.(本小题满分12分)设函数f(x)=ax-1-5(a>0,且a≠1),若y=f(x)的图象过点(3,20).(1)求a的值及y=f(x)的零点;(2)求不等式f(x)≥-2的解集.【解析】 (1)根据题意,函数f(x)=ax-1-5的图象过点(3,20),则有20=a2-5,又由a>0,且a≠1,则a=5,f(x)=5x-1-5,若f(x)=5x-1-5=0,则x=2,即函数f(x)的零点为2.(2)f(x)≥-2即5x-1-5≥-2,变形可得5x≥15,解可得x≥log515,即不等式的解集为[log515,+∞).19.(本小题满分12分)(2019·河南南阳市高一期中测试)设函数f(x)=log2(4x)·log2(2x)的定义域为[,4].(1)若t=log2x,求t的取值范围;(2)求y=f(x)的最大值与最小值,并求出取最值时对应的x的值.【解析】(1)∵≤x≤4,∴-2≤log2x≤2,∴-2≤t≤2.∴t的取值范围是[-2,2].(2)y=f(x)=log2(4x)·log2(2x)=(2+log2x)(1+log2x),由(1)知t=log2x,t∈[-2,2],∴y=(t+2)(t+1)=t2+3t+2=(t+)2-.当t=-,即log2x=-,x=时,ymin=-,当t=2,即log2x=2,x=4时,ymax=12.20.(本小题满分12分)某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/102kg)与上市时间t(单位:天)的数据如下表:时间t50110250种植成本Q150108150(1)根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q与上市时间t的变化关系.Q=at+b,Q=at2+bt+c,Q=a·bt,Q=a·logbt;(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.【解析】(1)由提供的数据知道,描述西红柿种植成本Q与上市时间t的变化关系的函数不可能是常数函数,从而用函数Q=at+b,Q=a·bt,Q=a·logbt中的任意一个进行描述时都应有a≠0,而此时上述三个函数均为单调函数,这与表格所提供的数据不吻合.所以,选取二次函数Q=at2+bt+c进行描述.以表格所提供的三组数据分别代入Q=at2+bt+c得到,解得.所以,描述西红柿种植成本Q与上市时间t的变化关系的函数为Q=t2-t+.(2)当t=-=150天时,西红柿种植成本最低为Q=·1502-·150+=100 (元/102kg).21.(本小题满分12分)已知函数f(x)=2x的定义域是[0,3],设g(x)=f(2x)-f(x+2),(1)求g(x)的解析式及定义域;(2)求函数g(x)的最大值和最小值.【解析】(1)∵f(x)=2x,∴g(x)=f(2x)-f(x+2)=22x-2x+2.因为f(x)的定义域是[0,3],所以0≤2x≤3,0≤x+2≤3,解得0≤x≤1.于是g(x)的定义域为{x|0≤x≤1}.(2)设g(x)=(2x)2-4×2x=(2x-2)2-4.∵x∈[0,1],∴2x∈[1,2],∴当2x=2,即x=1时,g(x)取得最小值-4;当2x=1,即x=0时,g(x)取得最大值-3.22.(本小题满分12分)若函数f(x)满足f(logax)=·(x-)(其中a>0且a≠1).(1)求函数f(x)的解析式,并判断其奇偶性和单调性;(2)当x∈(-∞,2)时,f(x)-4的值恒为负数,求a的取值范围.【解析】(1)令logax=t(t∈R),则x=at,∴f(t)= (at-a-t).∴f(x)= (ax-a-x)(x∈R).∵f(-x)= (a-x-ax)=- (ax-a-x)=-f(x),∴f(x)为奇函数.当a>1时,y=ax为增函数,y=-a-x为增函数,且>0,∴f(x)为增函数.当0<a<1时,y=ax为减函数,y=-a-x为减函数,且<0,∴f(x)为增函数.∴f(x)在R上为增函数.(2)∵f(x)是R上的增函数,∴y=f(x)-4也是R上的增函数.由x<2,得f(x)<f(2),要使f(x)-4在(-∞,2)上恒为负数,只需f(2)-4≤0,即 (a2-a-2)≤4.∴≤4,∴a2+1≤4a,∴a2-4a+1≤0,∴2-≤a≤2+.又a≠1,∴a的取值范围为[2-,1)∪(1,2+].
相关试卷
这是一份专题23 三角函数(基础测评卷)-2021-2022学年高一数学单元复习(人教A版2019必修第一册),共15页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
这是一份专题20 指数函数与对数函数(真题训练)-2021-2022学年高一数学单元复习(人教A版2019必修第一册),共4页。试卷主要包含了设a=30.7,b=,设alg34=2,则4﹣a=,已知55<84,134<85,故选B等内容,欢迎下载使用。
这是一份专题13 函数的概念与性质(基础测评卷)-2021-2022学年高一数学单元复习(人教A版2019必修第一册),共10页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。