- 8.5.2 直线与平面平行的判定1课时-2021-2022学年高一数学新教材同步课堂精讲练导学案(人教A版2019必修第二册) 学案 0 次下载
- 8.5.2 直线与平面平行的性质2课时-2021-2022学年高一数学新教材同步课堂精讲练导学案(人教A版2019必修第二册) 学案 0 次下载
- 8.5.3 平面与平面平行的性质2课时-2021-2022学年高一数学新教材同步课堂精讲练导学案(人教A版2019必修第二册) 学案 0 次下载
- 8.6.1 直线与直线垂直-2021-2022学年高一数学新教材同步课堂精讲练导学案(人教A版2019必修第二册) 学案 0 次下载
- 8.6.2 直线与平面垂直的判定1课时-2021-2022学年高一数学新教材同步课堂精讲练导学案(人教A版2019必修第二册) 学案 0 次下载
2021学年8.5 空间直线、平面的平行导学案及答案
展开8.5.3平面与平面平行的判定
导学案
编写:廖云波 初审:谭光垠 终审:谭光垠 廖云波
【学习目标】
1.理解并掌握平面与平面平行的判定定理,明确定理中“相交”两字的重要性
2.能利用判定定理解决有关面面平行问题
【自主学习】
知识点1 平面与平面平行的判定定理
表示 定理 | 图形 | 文字 | 符号 |
平面与平面平 行的判定定理 | 一个平面内的 .与另一个平面平行,则这两个平面平行 | ⇒β∥α |
【合作探究】
探究一 面面平行判定定理的理解
【例1】在长方体ABCDA1B1C1D1中,E,F,G,H分别为棱A1B1,BB1,CC1,C1D1的中点,则下列结论中正确的是( )
A.AD1∥平面EFGH
B.BD1∥GH
C.BD∥EF
D.平面EFGH∥平面A1BCD1
归纳总结:
【练习1】下列命题中,错误的命题是 ( )
A.平行于同一直线的两个平面平行
B.平行于同一平面的两个平面平行
C.平行于同一平面的两直线关系不确定
D.两平面平行,一平面内的直线必平行于另一平面
探究二 平面与平面平行的证明
【例2】如图所示,在三棱柱ABCA1B1C1中,点D,E分别是BC与B1C1的中点.求证:平面A1EB∥平面ADC1.
归纳总结:
【练习2】如图所示,在正方体ABCDA1B1C1D1中,M、E、F、N分别是A1B1、B1C1、C1D1、D1A1的中点.
求证:(1)E、F、B、D四点共面;
(2)平面MAN∥平面EFDB.
探究三 线面平行、面面平行的综合应用
【例3】已知底面是平行四边形的四棱锥PABCD,点E在PD上,且PE:ED=2:1,在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论,并说出点F的位置.
归纳总结:
【练习3】如图,在正方体ABCDA1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、DC、SC的中点,求证:
(1)直线EG∥平面BDD1B1;
(2)平面EFG∥平面BDD1B1.
课后作业
A组 基础题
一、选择题
1.直线l∥平面α,直线m∥平面α,直线l与m相交于点P,且l与m确定的平面为β,则α与β的位置关系是( )
A.相交 B.平行
C.异面 D.不确定
2.α、β是两个不重合的平面,a、b是两条不同的直线,则在下列条件下,可判定α∥β的是( )
A.α、β都平行于直线a、b
B.α内有三个不共线的点到β的距离相等
C.a,b是α内两条直线,且a∥β,b∥β
D.a,b是两条异面直线且a∥α,b∥α,α∥β,b∥β
3.已知m,n是两条直线,α,β是两个平面,有以下命题:
①m,n相交且都在平面α,β外,m∥α,m∥β,n∥α,n∥β,则α∥β;
②若m∥α,m∥β,则α∥β;
③若m∥α,n∥β,m∥n,则α∥β.
其中正确命题的个数是( )
A.0 B.1 C.2 D.3
4.在正方体ABCD-A1B1C1D1中,M为棱A1D1的动点,O为底面ABCD的中心,E、F分别是A1B1、C1D1的中点,下列平面中与OM扫过的平面平行的是( )
A.面ABB1A1 B.面BCC1B1
C.面BCFE D.面DCC1D1
5.六棱柱ABCDEF-A1B1C1D1E1F1的底面是正六边形,则此六棱柱的面中互相平行的有( )
A.1对 B.2对 C.3对 D.4对
6.在正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,给出下列四个推断:
①FG∥平面AA1D1D;②EF∥平面BC1D1;③FG∥平面BC1D1;④平面EFG∥平面BC1D1.
其中推断正确的序号是( )
A.①③ B.①④ C.②③ D.②④
7.如图是四棱锥的平面展开图,其中四边形ABCD为正方形,E,F,G,H分别为PA,PD,PC,PB的中点,在此几何体中,给出下面四个结论:
①平面EFGH∥平面ABCD;②平面PAD∥BC;③平面PCD∥AB;④平面PAD∥平面PAB.
其中正确的有( )
A.①③ B.①④
C.①②③ D.②③
二、填空题
8.已知平面α、β和直线a、b、c,且a∥b∥c,a⊂α,b、c⊂β,则α与β的关系是_____.
9.已知平面α和β,在平面α内任取一条直线a,在β内总存在直线b∥a,则α与β的位置关系是________.
10.已知a和b是异面直线,且a⊂平面α,b⊂平面β,a∥β,b∥α,则平面α与β的位置关系是________.
三、解答题
11.如图,在正方体ABCD-A1B1C1D1中,M,N,P分别是C1C,B1C1,C1D1的中点,求证:平面PMN∥平面A1BD.
12.已知四棱锥P-ABCD中,底面ABCD为平行四边形,点M,N,Q分别在PA,BD,PD上,且PM∶MA=BN∶ND=PQ∶QD.求证:平面MNQ∥平面PBC.
13.如图,在四棱锥C-ABED中,四边形ABED是正方形,G,F分别是线段EC,BD的中点.
(1)求证:GF∥平面ABC;
(2)若点P为线段CD的中点,平面GFP与平面ABC有怎样的位置关系?并证明.
B组 能力提升
一、选择题
1.(多选题)如图是正方体的平面展开图,在这个正方体中,
下列命题中,正确的有( )
A.BM∥平面DE B.CN∥平面AF
C.平面BDM∥平面AFN D.平面BDE∥平面NCF
二、填空题
2.已知l,m是两条不同的直线,α,β是两个不同的平面,有下面四个命题:
①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;
②若l⊂α,l∥β,α∩β=m,则l∥m;
③若α∥β,l∥α,则l∥β;
④若l∥α,m∥l,则m∥α.
其中所有真命题的序号是________.
3.如图,四棱锥PABCD的底面是平行四边形,PA=PB=AB=2,E、F分别是AB、CD的中点,平面AGF∥平面PEC,PD∩平面AGF=G,ED与AF相交于点H,则GH=________.
三、解答题
4.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,且AB=2CD,在棱AB上是否存在一点F,使平面C1CF∥ADD1A1?若存在,求点F的位置,若不存在,请说明理由.
5.如图,四边形ABCD为矩形,A,E,B,F四点共面,且△ABE和△ABF均为等腰直角三角形,∠BAE=∠AFB=90°.
求证:平面BCE∥平面ADF.
6.如图①,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=AP,D为AP的中点,E,F,G分别为PC,PD,CB的中点,将△PCD沿CD折起,得到四棱锥PABCD,如图②.
图① 图②
求证:在四棱锥PABCD中,AP∥平面EFG.
高中数学人教A版 (2019)必修 第二册8.6 空间直线、平面的垂直导学案及答案: 这是一份高中数学人教A版 (2019)必修 第二册8.6 空间直线、平面的垂直导学案及答案,文件包含863平面与平面垂直的性质2课时解析版docx、863平面与平面垂直的性质2课时原卷版docx等2份学案配套教学资源,其中学案共34页, 欢迎下载使用。
高中8.6 空间直线、平面的垂直学案: 这是一份高中8.6 空间直线、平面的垂直学案,文件包含863平面与平面垂直的判定1课时解析版docx、863平面与平面垂直的判定1课时原卷版docx等2份学案配套教学资源,其中学案共40页, 欢迎下载使用。
人教A版 (2019)必修 第二册8.6 空间直线、平面的垂直学案: 这是一份人教A版 (2019)必修 第二册8.6 空间直线、平面的垂直学案,文件包含862直线与平面垂直的判定1课时解析版docx、862直线与平面垂直的判定1课时原卷版docx等2份学案配套教学资源,其中学案共40页, 欢迎下载使用。