山东省2022年九年级数学中考一轮复习综合练习题(Word版含答案)
展开
这是一份山东省2022年九年级数学中考一轮复习综合练习题(Word版含答案),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年春九年级数学中考一轮复习综合练习题(附答案)
一、选择题
1.﹣的倒数是( )
A.3 B. C.﹣3 D.﹣
2.的算术平方根是( )
A.4 B.2 C. D.±2
3.下列运算正确的是( )
A.2x+3x=5x2 B.(3x+2)(2﹣3x)=9x2﹣4
C.2x3•3x2=6x5 D.(﹣2x)3=﹣6x3
4.下列计算正确的是( )
A.=﹣3 B.﹣=﹣0.6 C.=±6 D.=
5.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为( )
A.1.05×105 B.0.105×10﹣4 C.1.05×10﹣5 D.105×10﹣7
6.如图,a∥b,一块含45°的直角三角板的一个顶点落在其中一条直线上,若∠1=65°,则∠2的度数为( )
A.25° B.35° C.55° D.65°
7.关于x的方程x2﹣ax+2a=0的两根的平方和是5,则a的值是( )
A.﹣1或5 B.1 C.5 D.﹣1
8.如图,在直角△BAD中,延长斜边BD到点C,使DC=BD,连接AC,若tanB=,则tan∠CAD的值( )
A. B. C. D.
9.目前以5G等为代表的战略性新兴产业蓬勃发展.某市2019年底有5G用户2万户,计划到2021年底全市5G用户数累计达到8.72万户.设全市5G用户数年平均增长率为x,则x值为( )
A.50% B.40% C.30% D.20%
10.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( )
A. B. C. D.
11.若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做“整点”.例如:P(1,0)、Q(2,﹣2)都是“整点”.抛物线y=mx2﹣4mx+4m﹣2(m>0)与x轴交于点A、B两点,若该抛物线在A、B之间的部分与线段AB所围成的区域(包括边界)恰有七个整点,则m的取值范围是( )
A.≤m<1 B.<m≤1 C.1<m≤2 D.1<m<2
12.如图,正方形ABCD的边长为2,点O是对角线AC、BD的交点,过点O作射线OM、ON分别交边BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G,EF中点为H.给出下列结论:①△COE≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=OG•OC;⑤H点经过的路程为π.其中正确的是( )
A.①②③④⑤ B.①②③⑤ C.①②③ D.①④⑤
二、填空题
13.若=3﹣x,则x的取值范围是 .
14.如图,将一张矩形纸片ABCD的边BC斜着向AD边对折,使点B落在AD边上,记为B′,折痕为CE,再将CD边斜向下对折,使点D落在B′C边上,记为D′,折痕为CG,B′D′=2,3BE=BC.则矩形纸片ABCD的面积为 .
15.如图,直线AB交双曲线于A、B,交x轴于点C,B为线段AC的中点,过点B作BM⊥x轴于M,连接OA.若OM=2MC,S△OAC=12.则k的值为 .
16.观察等式:2+22=23﹣2:2+22+23=24﹣2;2+22+23+24=25﹣2,…已知按一定规律排列的一组数:250、251、252、…、299、2100,若250=a,则用含a的式子表示这组数的和是 .
三、解答题
17.(1)计算:;
(2)先化简后求值:,其中a=.
18.如图,我国某海域有A,B两个港口,相距80海里,港口B在港口A的东北方向,点C处有一艘货船,该货船在港口A的北偏西30°方向,在港口B的北偏西75°方向,求货船与港口A之间的距离.(结果保留根号)
19.如图,PA是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC交AB于点E,且PA=PB.
(1)求证:PB是⊙O的切线;
(2)若∠APC=3∠BPC,求的值.
20.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”.这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.
(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?
(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?
21.阅读下面的材料:
如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2,
(1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;
(2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数.
例题:证明函数f(x)=(x>0)是减函数.
证明:设0<x1<x2,
f(x1)﹣f(x2)=﹣==.
∵0<x1<x2,
∴x2﹣x1>0,x1x2>0.
∴>0.即f(x1)﹣f(x2)>0.
∴f(x1)>f(x2).
∴函数f(x)=(x>0)是减函数.
根据以上材料,解答下面的问题:
已知函数f(x)=+x(x<0),
f(﹣1)=+(﹣1)=0,f(﹣2)=+(﹣2)=﹣
(1)计算:f(﹣3)= ,f(﹣4)= ;
(2)猜想:函数f(x)=+x(x<0)是 函数(填“增”或“减”);
(3)请仿照例题证明你的猜想.
22.如图1,抛物线y=ax2+2x+c与x轴交于A(﹣4,0),B(1,0)两点,过点B的直线y=kx+分别与y轴及抛物线交于点C,D.
(1)求直线和抛物线的表达式;
(2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒,当t为何值时,△PDC为直角三角形?请直接写出所有满足条件的t的值;
(3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN的值最小?若存在,求出其最小值及点M,N的坐标;若不存在,请说明理由.
参考答案
一、选择题
1.解:﹣的倒数是﹣3,
故选:C.
2.解:∵=2,
∴的算术平方根是.
故选:C.
3.解:A、原式=5x,故此选项不符合题意;
B、原式=4﹣9x2,故此选项不符合题意;
C、原式=6x5,故此选项符合题意;
D、原式=﹣8x3,故此选项不符合题意;
故选:C.
4.解:A.=3,本选项错误;
B.﹣=﹣0.6,本选项正确;
C.=6,本选项错误;
D.=﹣,本选项错误;
故选:B.
5.解:0.0000105=1.05×10﹣5,
故选:C.
6.解:如图:
∵∠1=65°,∠1+45°+∠3=180°,
∴∠3=180°﹣45°﹣65°=70°,
∵a∥b,
∴∠4+∠2=∠3=70°,
∵∠4=45°,
∴∠2=70°﹣∠4=70°﹣45°=25°.
故选:A.
7.解:设方程的两根为x1,x2,则x1+x2=a,x1•x2=2a,
∵x12+x22=5,
∴(x1+x2)2﹣2x1•x2=5,
∴a2﹣4a﹣5=0,
∴a1=5,a2=﹣1,
∵Δ=a2﹣8a≥0,
∴a=﹣1.
故选:D.
8.解:如图,延长AD,过点C作CE⊥AD,垂足为E,
∵tanB=,即=,
∴设AD=5x,则AB=3x,
∵∠CDE=∠BDA,∠CED=∠BAD,
∴△CDE∽△BDA,
∴,
∴CE=x,DE=,
∴AE=,
∴tan∠CAD==.
故选:D.
9.解:∵该市2019年底有5G用户2万户,全市5G用户数年平均增长率为x,
∴该市2020年底有5G用户2(1+x)万户,2021年底有5G用户2(1+x)2万户,
依题意得:2+2(1+x)+2(1+x)2=8.72,
整理得:x2+3x﹣1.36=0,
解得:x1=0.4=40%,x2=﹣3.4(不合题意,舍去).
故选:B.
10.解:画树状图为:
共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,
所以两次抽取的卡片上数字之积为偶数的概率==.
故选:C.
11.解:∵y=mx2﹣4mx+4m﹣2=m(x﹣2)2﹣2且m>0,
∴该抛物线开口向上,顶点坐标为(2,﹣2),对称轴是直线x=2.
由此可知点(2,0)、点(2,﹣1)、顶点(2,﹣2)符合题意.
①当该抛物线经过点(1,﹣1)和(3,﹣1)时(如答案图1),这两个点符合题意.
将(1,﹣1)代入y=mx2﹣4mx+4m﹣2得到﹣1=m﹣4m+4m﹣2.解得m=1.
此时抛物线解析式为y=x2﹣4x+2.
由y=0得x2﹣4x+2=0.解得x1=2﹣≈0.6,x2=2+≈3.4.
∴x轴上的点(1,0)、(2,0)、(3,0)符合题意.
则当m=1时,恰好有 (1,0)、(2,0)、(3,0)、(1,﹣1)、(3,﹣1)、(2,﹣1)、(2,﹣2)这7个整点符合题意.
∴m≤1.【注:m的值越大,抛物线的开口越小,m的值越小,抛物线的开口越大】
答案图1(m=1时) 答案图2( m=时)
②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意.
此时x轴上的点 (1,0)、(2,0)、(3,0)也符合题意.
将(0,0)代入y=mx2﹣4mx+4m﹣2得到0=0﹣0+4m﹣2.解得m=.
此时抛物线解析式为y=x2﹣2x.
当x=1时,得y=×1﹣2×1=﹣<﹣1.∴点(1,﹣1)符合题意.
当x=3时,得y=×9﹣2×3=﹣<﹣1.∴点(3,﹣1)符合题意.
综上可知:当m=时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,﹣1)、(3,﹣1)、(2,﹣2)、(2,﹣1)都符合题意,共有9个整点符合题意,
∴m=不符合题.
∴m>.
综合①②可得:当<m≤1时,该函数的图象与x轴所围成的区域(含边界)内有七个整点,
故选:B.
12.解:①∵四边形ABCD是正方形,
∴OC=OD,AC⊥BD,∠ODF=∠OCE=45°,
∵∠MON=90°,
∴∠COM=∠DOF,
∴△COE≌△DOF(ASA),
故①正确;
②∵△COE≌△DOF,
∴OE=OF,
∵∠MON=90°,
∴∠OEG=45°=∠FCG,
∵∠OGE=∠FGC,
∴△OGE∽△FGC,
故②正确;
③∵△COE≌△DOF,
∴S△COE=S△DOF,
∴S四边形CEOF=S△OCD=S正方形ABCD,
故③正确;
④∵△COE≌△DOF,
∴OE=OF,
又∵∠EOF=90°,
∴△EOF是等腰直角三角形,
∴∠OEG=45°=∠OCE,
∵∠EOG=∠COE,
∴△OEG∽△OCE,
∴OE:OC=OG:OE,
∴OG•OC=OE2,
∵CE=DF,BC=CD,
∴BE=CF,
又∵Rt△CEF中,CF2+CE2=EF2,
∴BE2+DF2=EF2,
∵EF2>OE2,
∴BE2+DF2>OG•OC,故④错误;
⑤如图,连接OH,CH,作OC的垂直平分线交BC于Q,交CD于点P,
∵△EOF是等腰直角三角形,点H是EF的中点,
∴OH=EF,
∵∠BCD=90°,点H是EF的中点,
∴CH=EF,
∴CH=OH,
∴点H在OC的垂直平分线上,
∴点H的轨迹是PQ,
∵正方形ABCD的边长为2,
∴BD=4,
∵PQ⊥AC,BD⊥AC,
∴PQ∥BD,
∴△CPQ∽△CDB,
∴=,
∴PQ=BD=2,
∴H点经过的路程为2,故⑤错误,
故选:C.
二、填空题
13.解:∵=3﹣x,
∴3﹣x≥0,解得x≤3.
故答案为:x≤3.
14.解:设BE=a,则BC=3a,
由题意可得,
CB=CB′,CD=CD′,BE=B′E=a,
∵B′D′=2,
∴CD′=3a﹣2,
∴CD=3a﹣2,
∴AE=3a﹣2﹣a=2a﹣2,
∴DB′===2,
∴AB′=3a﹣2,
∵AB′2+AE2=B′E2,
∴(3a﹣2)2+(2a﹣2)2=a2,
解得,a=或a=,
当a=时,BC=2,
∵B′D′=2,CB=CB′,
∴a=时不符合题意,舍去;
当a=时,BC=5,AB=CD=3a﹣2=3,
∴矩形纸片ABCD的面积为:5×3=15,
故答案为:15.
15.解:过A作AN⊥OC于N,
∵BM⊥OC
∴AN∥BM,
∵,B为AC中点,
∴MN=MC,
∵OM=2MC,
∴ON=MN=CM,
设A的坐标是(a,b),
则B(2a,b),
∵S△OAC=12.
∴•3a•b=12,
∴ab=8,
∴k=ab=8,
故答案为:8.
16.解:∵2+22=23﹣2;
2+22+23=24﹣2;
2+22+23+24=25﹣2;
…
∴2+22+23+…+2n=2n+1﹣2,
∴250+251+252+…+299+2100
=(2+22+23+…+2100)﹣(2+22+23+…+249)
=(2101﹣2)﹣(250﹣2)
=2101﹣250,
∵250=a,
∴2101=(250)2•2=2a2,
∴原式=2a2﹣a.
故答案为:2a2﹣a.
三、解答题
17.解:(1)原式=﹣2﹣2×+1
=﹣2﹣+1
=﹣1+;
(2)
=•
=•
=•
=,
当a=时,原式==.
18.解:过点A作AD⊥BC于D,如图所示:
由题意得:∠ABC=180°﹣75°﹣45°=60°,
∵AD⊥BC,
∴∠ADB=∠ADC=90°,
在Rt△ABD中,∠DAB=90°﹣60°=30°,AD=AB•sin∠ABD=80×sin60°=80×=40(海里),
∵∠CAB=30°+45°=75°,
∴∠DAC=∠CAB﹣∠DAB=75°﹣30°=45°,
∴△ADC是等腰直角三角形,
∴AC=AD=×40=40(海里).
答:货船与港口A之间的距离是40海里.
19.(1)证明:连接OP、OB.
∵PA是⊙O的切线,
∴PA⊥OA,
∴∠PAO=90°,
∵PA=PB,PO=PO,OA=OB,
∴△PAO≌△PBO.
∴∠PAO=∠PBO=90°,
∴PB⊥OB,
∴PB是⊙O的切线.
(2)设OP交AB于K.
∵AC是直径,
∴∠ABC=90°,
∴AB⊥BC,
∵PA、PB都是切线,
∴PA=PB,∠APO=∠BPO,
∵OA=OB,
∴OP垂直平分线段AB,
∴OK∥BC,
∵AO=OC,
∴AK=BK,
∴BC=2OK,设OK=a,则BC=2a,
∵∠APC=3∠BPC,∠APO=∠OPB,
∴∠OPC=∠BPC=∠PCB,
∴BC=PB=PA=2a,
∵△PAK∽△POA,
∴PA2=PK•PO,设PK=x,
则有:x2+ax﹣4a2=0,
解得x=a(负根已经舍弃),
∴PK=a,
∵PK∥BC,
∴==.
20.解:(1)设本次试点投放的A型车x辆、B型车y辆,
根据题意,得:,
解得:,
答:本次试点投放的A型车60辆、B型车40辆;
(2)由(1)知A、B型车辆的数量比为3:2,
设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,
根据题意,得:3a×400+2a×320≥1840000,
解得:a≥1000,
即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,
则城区10万人口平均每100人至少享有A型车3000×=3辆、至少享有B型车2000×=2辆.
21.解:(1)∵f(x)=+x(x<0),
∴f(﹣3)=﹣3=﹣,f(﹣4)=﹣4=﹣
故答案为:﹣,﹣
(2)∵﹣4<﹣3,f(﹣4)<f(﹣3)
∴函数f(x)=+x(x<0)是增函数
故答案为:增
(3)设x1<x2<0,
∵f(x1)﹣f(x2)=+x1﹣﹣x2=(x1﹣x2)(1﹣)
∵x1<x2<0,
∴x1﹣x2<0,x1+x2<0,
∴f(x1)﹣f(x2)<0
∴f(x1)<f(x2)
∴函数f(x)=+x(x<0)是增函数
22.解:(1)把A(﹣4,0),B(1,0)代入y=ax2+2x+c,得
,
解得:,
∴抛物线解析式为:y=,
∵过点B的直线y=kx+,
∴代入(1,0),得:k=﹣,
∴BD解析式为y=﹣;
(2)由得交点坐标为D(﹣5,4),
如图1,过D作DE⊥x轴于点E,作DF⊥y轴于点F,
当P1D⊥P1C时,△P1DC为直角三角形,
则△DEP1∽△P1OC,
∴=,即=,
解得t=,
当P2D⊥DC于点D时,△P2DC为直角三角形
由△P2DB∽△DEB得=,
即=,
解得:t=;
当P3C⊥DC时,△DFC∽△COP3,
∴=,即=,
解得:t=,
∴t的值为、、.
(3)由已知直线EF解析式为:y=﹣x﹣,
在抛物线上取点D的对称点D′,过点D′作D′N⊥EF于点N,交抛物线对称轴于点M
过点N作NH⊥DD′于点H,此时,DM+MN=D′N最小.
则△EOF∽△NHD′
设点N坐标为(a,﹣),
∴=,即=,
解得:a=﹣2,
则N点坐标为(﹣2,﹣2),
求得直线ND′的解析式为y=x+1,
当x=﹣时,y=﹣,
∴M点坐标为(﹣,﹣),
此时,DM+MN的值最小为==2.
相关试卷
这是一份2023年山东省临沂市九年级数学中考一轮复习综合练习题(含答案),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份山东省烟台市招远市泉山学校2022年九年级数学中考二轮复习综合练习题 (word版含答案),共20页。试卷主要包含了下列运算正确的是,如图,胶带的左视图是,不等式组的解集在数轴上表示为,定义运算等内容,欢迎下载使用。
这是一份2022年山东省济南市中考数学综合练习题(word版含答案),共12页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。