2022中考数学二轮复习专题:解题模型专练——有关实数的大小比较
展开
这是一份2022中考数学二轮复习专题:解题模型专练——有关实数的大小比较,共13页。试卷主要包含了下列四个数中,最小的数是,下面四个数中比﹣5小的数是,下列计算结果最小的是,规定等内容,欢迎下载使用。
2022中考数学二轮复习专题:解题模型专练——有关实数的大小比较一.生活实际中正数和负数的简单比较(共2小题)1.如表记录的是金佛山入冬以来连续四周的平均气温,请问周平均气温最低的是( )记录周次第一周第二周第三周第四周平均气温3℃0℃﹣2℃﹣4℃A.第一周 B.第二周 C.第三周 D.第四周2.质检员在一批足球中抽出四个进行质量检测,超过标准质量的克数记为正数,不足标准质量的克数记为负数,下列四个球中,最接近标准质量的足球是( )A. B. C. D.二.有理数大小比较(共4小题)3.下列四个数中,最小的数是( )A.0 B.﹣ C.5 D.﹣14.如果实数﹣1<a<0,那么a,﹣a,a2,自小到大顺序排列正确的是( )A.a<﹣a<a2< B.﹣a<a<a2< C.<a<a2<﹣a D.<a2<a<﹣a5.下面四个数中比﹣5小的数是( )A.﹣6 B.﹣4 C.0 D.16.已知a=﹣,b=﹣,c=,则下列各式中值最大的是( )A.|a+b+c| B.|a﹣b﹣c| C.|a﹣b+c| D.|a+b﹣c|三.有理数的乘法(共1小题)7.在数轴上表示有理数a,b,c的点如图所示,若bc<0,b+c>0,则( )A.|b|>|c| B.abc>0 C.a+b>0 D.|a|<|b|四.有理数的乘方(共1小题)8.下列计算结果最小的是( )A.﹣(﹣2)2 B.(﹣2)2 C.(﹣)2 D.﹣(﹣)2五.有理数的混合运算(共1小题)9.规定:用{m}表示大于m的最小整数,例如{}=3,{4}=5,{﹣1.5}=﹣1等;用[m]表示不大于m的最大整数,例如[]=3,[2]=2,[﹣3.2]=﹣4,如果整数x满足关系式:2{x}+3[x]=2022,则x的值可能为( )A.403 B.404 C.405 D.406六.数轴(共2小题)10.已知有理数a,b在数轴上的对应点的位置如图所示,则下列关系正确的是( )A.a>b>0 B.b>a>0 C.b>0>a D.a>0>b11.有理数a在数轴上的对应点的位置如图所示,如果有理数b满足b>|a|,那么b的值可以是( )A.2 B.1 C.﹣2 D.﹣3七.实数与数轴(共2小题)12.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是( )A.ab>0 B.﹣a+b>0 C.a+b<0 D.|a|﹣|b|>013.数轴上A、B两点对应的数是﹣和,则A、B两点之间表示整数的点的个数为( )A.6个 B.5个 C.4个 D.3个八.实数大小比较(共7小题)14.实数a在数轴上的位置如图所示,则,1,0的大小顺序是( )A. B. C. D.0<1且1和的大小无法确定15.下列实数中,最大的数是( )A. B.π C.|﹣2| D.3.116.比较和的大小,下面结论正确的是( )A.< B.= C.> D.无法比较17.在实数﹣、3、0、﹣0.5中,最小的数是( )A.﹣ B.3 C.0 D.﹣0.518.在实数﹣3,﹣1,0,2中,比﹣2小的数是( )A.﹣3 B.﹣1 C.0 D.219.下列各数中,比﹣3小的数是( )A.﹣π B.﹣ C. D.20.在﹣2,﹣,0,1这四个数中,最小的数是( )A.﹣2 B. C.0 D.1九.估算无理数的大小(共2小题)21.估计的值在( )A.1与2之间 B.2与3之间 C.3与4之间 D.4与5之间22.的小数部分是( )A.7﹣ B.8﹣ C.﹣7 D.﹣8一十.整式的加减(共1小题)23.下列运算正确的是( )A.(﹣2)﹣(﹣3)=﹣5 B.3x+5y=8xy C.3a2﹣2a2=1 D.﹣3(x﹣1)=﹣3x+3一十一.二次根式的性质与化简(共1小题)24.若a=2021×2022﹣20212,b=1013×1008﹣1012×1007,c=,则a,b,c的大小关系是( )A.c<b<a B.a<c<b C.b<a<c D.b<c<a
参考答案一.生活实际中正数和负数的简单比较(共2小题)1.【分析】根据“正数大于零,零大于负数”和“负数之间比较大小,绝对值大的比较小”比较各数可得答案.【解答】解:根据“正数大于零,零大于负数”和“负数之间比较大小,绝对值大的比较小”比较各数可得﹣4<﹣2<0<3,故选:D.【点评】本题主要考查实数的大小比较,比较容易掌握.2.【分析】求出这些正数和负数的绝对值,然后进行比较即可.【解答】解:∵|+0.7|=0.7,|﹣0.8|=0.8,|+0.6|=0.6,|﹣1.3|=1.3,∴0.6<0.7<0.8<1.3,∴上列四个球中,C是最接近标准质量的足球,故选:C.【点评】本题考查了正数和负数,比较这些数的绝对值是解题的关键.二.有理数大小比较(共4小题)3.【分析】根据正数大于0,0大于负数,两个负数比较,绝对值大的反而小判断即可.【解答】解:∵|﹣|=,|﹣1|=1,∴<1,∴﹣>﹣1,∵正数大于0,0大于负数,∴5>0>﹣>﹣1,所以,在上列四个数0,﹣,5,﹣1中,最小的数是﹣1,故选:D.【点评】本题考查了有理数大小比较,熟练掌握两个负数比较,绝对值大的反而小是解题的关键.4.【分析】用特殊值法比较大小即可.【解答】解:若a=﹣,﹣a=,a2=,=﹣2,∵﹣2<﹣<<,∴<a<a2<﹣a,故选:C.【点评】本题考查了有理数的比较大小,用特殊值法比较大小是解题的关键.5.【分析】根据正数大于0,0大于负数,两个负数比较,绝对值大的反而小.【解答】解:∵正数大于0,0大于负数,∴排除C,D,∵|﹣4|=4,|﹣5|=5,|﹣6|=6,∴4<5<6,∴﹣4>﹣5>﹣6,故选:A.【点评】本题考查了有理数的大小比较,熟练掌握两个负数比较,绝对值大的反而小是解题的关键.6.【分析】根据绝对值,有理数的加法,有理数的减法,有理数的大小比较法则进行判断即可.【解答】解:∵a=﹣,b=﹣,c=,∴a和b都是负数,而c是正数,∵四个选项都带有绝对值,∴只有当a+b﹣c时,|a+b﹣c|的值最大,故选:D.【点评】本题考查了绝对值,有理数的加法,有理数的减法,有理数的大小比较,熟练掌握绝对值的意义以及有理数的加法,减法法则是解题的关键.三.有理数的乘法(共1小题)7.【分析】根据数轴可判断a<b<c,然后再根据bc<0,b+c>0,可得:a<b<0<﹣b<c,从而可判断答案.【解答】解:由数轴可知a<b<c,∵bc<0,b+c>0,∴a<b<0<﹣b<cA、|b|<|c|,故A不符合题意.B、abc>0,故B符合题意.C、a+b<0,故C不符合题意.D、|a|>|b|,故D不符合题.故选:B.【点评】本题考查数轴,解题的关键是根据题意得出a<b<0<﹣b<c,本题属于中等题型.四.有理数的乘方(共1小题)8.【分析】先化简原数,然后根据有理数的大小比较法则即可求出答案.【解答】解:∵﹣(﹣2)2=﹣4,(﹣2)2=4,()2=,﹣()2=﹣,∴﹣4<<<4,故选:A.【点评】本题考查有理数的乘方,解题的关键是正确化简原数,本题属于基础题型.五.有理数的混合运算(共1小题)9.【分析】本题给出了两个新的定义,可以通过把选项对应的数字代入算式中进行依次验证,来找出正确答案.【解答】解:A、当x=403时,{403}=404,[403]=403,2×{403}+3×[403]=2×404+3×403=808+1209=2017≠2022,故A选项不符合题意;B、当x=404时,{404}=405,[404]=404,2×{404}+3×[404]=2×405+3×404=810+1212=2022,故B选项符合题意;C、当x=405时,{405}=406,[405]=405,2×{405}+3×[405]=2×406+3×405=812+1215=2027≠2022,故C选项不符合题意;D、当x=406,{406}=407,[406]=406,2×{406}+3×[406]=2×407+3×406=814+1218=2032≠2022,故D选项不符合题意;故选:B.【点评】本题考查了有理数的大小比较,以及有理数的运算,以及对新定义的理解.解题关键是理解新定义,并能准确地计算.六.数轴(共2小题)10.【分析】根据有理数a、b的位置,可得b<0<a,从而判断出选项的对错.【解答】解:由数轴得:b<0<a.故选:D.【点评】本题考查了有理数大小比较:数轴左面的数总小于右面的数.11.【分析】根据绝对值的意义判断即可.【解答】解:由题意得:﹣2<a<﹣1,∴1<|a|<2,∵有理数b满足b>|a|,∴b的值可以是2,故选:A.【点评】本题考查了数轴,熟练掌握绝对值的意义是解题的关键.七.实数与数轴(共2小题)12.【分析】根据a,b两数在数轴上的位置确定它们的符号和绝对值的大小,再对各个选项逐一分析判断即可.【解答】解:由数轴可知,﹣1<a<0<1<b,|b|>|a|.∵a<0,b>0,∴ab<0,∴A选项错误;∵a<0,∴﹣a>0,又∵b>0,∴﹣a+b>0,∴B选项正确;∵a<0,b>0,|b|>|a|,∴a+b>0,∴C选项错误;∵|b|>|a|,∵|a|﹣|b|<0,∴D选项错误.故选:B.【点评】本题考查了实数与数轴的对应关系,解题的关键是确定a,b的符号和绝对值的大小关系.13.【分析】根据实数的大小关系以及整数的定义解决此题.【解答】解:根据实数的大小关系以及整数的定义,A,B两点之间表示整数的点为﹣3、﹣2、﹣1、0、1、2,共6个.故选:A.【点评】本题主要考查实数的大小关系以及整数的定义,熟练掌握实数的大小关系以及整数的定义是解决本题的关键.八.实数大小比较(共7小题)14.【分析】根据数轴上a所在的位置可用取特殊值的方法比较个数的大小.【解答】解:∵﹣1<a<0,∴令a=﹣,则﹣=;∵0<1<,∴0<1<﹣.故选:C.【点评】此题主要考查了实数与数轴之间对应关系及实数的大小的比较,当给出的未知字母的值在一个确定的范围内时,可用取特殊值的方法进行比较,以简化计算.15.【分析】估算出的值,求出|﹣2|的值即可判断.【解答】解:∵1<2<4,∴1<<2,∵|﹣2|=2,∴在,π,|﹣2|,3.1这四个数中,π>3.1>|﹣2|>,∴最大的数是:π,故选:B.【点评】本题考查了实数大小比较,绝对值,算术平方根,准确熟练地进行计算是解题的关键.16.【分析】先求出这两个数的平方,然后再进行比较即可.【解答】解:∵(2)2=12,(3)2=18,∴12<18,∴2<3,故选:A.【点评】本题考查了实数大小比较,算术平方根,熟练掌握平方运算比较大小是解题的关键.17.【分析】根据正数大于0,0大于负数,两个负数比较,绝对值大的反而小判断即可.【解答】解:∵|﹣|=,|﹣0.5|=0.5,∴>0.5,∴﹣<﹣0.5,在实数﹣、3、0、﹣0.5中,﹣<﹣0.5<0<3,∴最小的数是:﹣,故选:A.【点评】本题考查了实数大小比较,算术平方根,熟练掌握两个负数比较,绝对值大的反而小是解题的关键.18.【分析】根据正数大于0,0大于负数,两个负数比较,绝对值大的反而小判断即可.【解答】解:∵|﹣3|=3,|﹣1|=1,|﹣2|=2∴3>2>1,∴﹣3<﹣2<﹣1,∵正数大于0,0大于负数,∴2>0>﹣1>﹣2>﹣3,∴在实数﹣3,﹣1,0,2中,比﹣2小的数是﹣3,故选:A.【点评】本题考查了实数大小比较,熟练掌握两个负数比较,绝对值大的反而小是解题的关键.19.【分析】根据负数比较大小,绝对值大的反而小,进行比较即可【解答】解:∵|﹣3|=3,|﹣π|=π,|﹣|=,|﹣|=,|﹣|=,∴π>3>>>,∴﹣π<﹣3<﹣<﹣<﹣,所以,﹣π,﹣,﹣,﹣这四个数中,比﹣3小的数是:﹣π,故选:A.【点评】本题考查了算术平方根,实数大小比较,熟练掌握负数比较大小的方法是解题的关键.20.【分析】根据正数大于0,0大于负数,两个负数比较,绝对值大的反而小,判断即可.【解答】解:∵正数大于0,0大于负数,∴排除C,D,∵|﹣2|=2,|﹣|=,∴2>,∴﹣2<﹣,∴在﹣2,﹣,0,1这四个数中,最小的数是:﹣2,故选:A.【点评】本题考查了实数大小比较,算术平方根,熟练掌握两个负数比较,绝对值大的反而小是解题的关键.九.估算无理数的大小(共2小题)21.【分析】先求出<<,再得出选项即可.【解答】解:∵<<,∴3<<4,即的值在3到4之间.故选:C.【点评】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.22.【分析】先求出的范围,可解答.【解答】解:∵7<<8,∴的整数部分7,∴的小数部分是﹣7.故选:C.【点评】本题主要考查了估算无理数的大小,能求出的整数部分是解题的关键.一十.整式的加减(共1小题)23.【分析】根据有理数的减法以及整式的加减运算即可求出答案.【解答】解:A、原式=﹣2+3=﹣1,故A不符合题意.B、3x与5y不是同类项,故不能合并,故B不符合题意.C、原式=a2,故C不符合题意.D、原式=﹣3x+3,故D符合题意.故选:D.【点评】本题考查有理数的减法以及整式的加减运算,解题的关键是熟练运用有理数的减法运算以及整式的加减运算,本题属于基础题型.一十一.二次根式的性质与化简(共1小题)24.【分析】先化简各式,然后再进行比较即可.【解答】解:a=2021×2022﹣20212=2021×(2022﹣2021)=2021×1=2021;b=1013×1008﹣1012×1007=(1012+1)(1007+1)﹣1012×1007=1012×1007+1012+1007+1﹣1012×1007=1012+1007+1=2020;c====;∴2020<<2021,∴b<c<a,故选:D.【点评】本题考查了实数大小比较,二次根式的性质与化简,准确熟练地化简各式是解题的关键.
相关试卷
这是一份专题07模型方法课之互补型旋转解题方法专练- 2022-2023学年八年级上册数学专题训练(人教版),文件包含专题07模型方法课之互补型旋转解题方法专练解析版-2022-2023学年八年级数学专题训练人教版docx、专题07模型方法课之互补型旋转解题方法专练原卷版-2022-2023学年八年级数学专题训练人教版docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。
这是一份专题06模型方法课之将军饮马模型解题方法专练- 2022-2023学年八年级上册数学专题训练(人教版),文件包含专题06模型方法课之将军饮马模型解题方法专练解析版-2022-2023学年八年级数学专题训练人教版docx、专题06模型方法课之将军饮马模型解题方法专练原卷版-2022-2023学年八年级数学专题训练人教版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
这是一份专题02模型方法课之截长补短解题方法专练- 2022-2023学年八年级上册数学专题训练(人教版),文件包含专题02模型方法课之截长补短解题方法专练解析版-2022-2023学年八年级数学专题训练人教版docx、专题02模型方法课之截长补短解题方法专练原卷版-2022-2023学年八年级数学专题训练人教版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。