专题20图形的平移翻折对称(共34题)-2021年中考数学真题分项汇编(原卷版+解析版)【全国通用】
展开2021年中考数学真题分项汇编【全国通用】(第01期)
专题20图形的平移翻折对称(共34题)
姓名:__________________ 班级:______________ 得分:_________________
一、单选题
1.(2021·湖南衡阳市·中考真题)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )
A. B. C. D.
2.(2021·湖南中考真题)下列垃圾分类标志分别是厨余垃圾、有害垃圾、其他垃圾和可回收物,其中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
3.(2021·四川自贡市·中考真题)下列图形中,是轴对称图形且对称轴条数最多的是( )
A. B. C. D.
4.(2021·四川泸州市·中考真题)在平面直角坐标系中,将点A(-3,-2)向右平移5个单位长度得到点B,则点B关于y轴对称点的坐标为( )
A.(2,2) B.(-2,2) C.(-2,-2) D.(2,-2)
5.(2021·四川凉山彝族自治州·中考真题)下面四个交通标志图是轴对称图形的是( )
A. B. C. D.
6.(2021·四川凉山彝族自治州·中考真题)在平面直角坐标系中,将线段AB平移后得到线段,点的对应点的坐标为,则点的对应点的坐标为( )
A. B. C. D.
7.(2021·浙江绍兴市·中考真题)数学兴趣小组同学从“中国结”的图案(图1)中发现,用相同的菱形放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是( )
A.用3个相同的菱形放置,最多能得到6个菱形
B.用4个相同的菱形放置,最多能得到15个菱形
C.用5个相同的菱形放置,最多能得到27个菱形
D.用6个相同的菱形放置,最多能得到41个菱形
8.(2021·甘肃武威市·中考真题)2021年是农历辛丑牛年,习近平总书记勉励全国各族人民在新的一年发扬“为民服务孺子牛,创新发展拓荒牛,艰苦奋斗老黄牛”精神,某社区也开展了“迎新春牛年剪纸展”,下面的剪纸作品是轴对称图形的是( )
A. B. C. D.
9.(2021·浙江丽水市·中考真题)四盏灯笼的位置如图.已知A,B,C,D的坐标分别是 (−1,b),(1,b),(2,b),(3.5,b),平移y轴右侧的一盏灯笼,使得y轴两侧的灯笼对称,则平移的方法可以是( )
A.将B向左平移4.5个单位 B.将C向左平移4个单位
C.将D向左平移5.5个单位 D.将C向左平移3.5个单位
10.(2021·四川凉山彝族自治州·中考真题)如图,中,,将沿DE翻折,使点A与点B重合,则CE的长为( )
A. B.2 C. D.
11.(2021·四川广安市·中考真题)如图,将绕点逆时针旋转得到,若且于点,则的度数为( )
A. B. C. D.
12.(2021·四川眉山市·中考真题)在平面直角坐标系中,抛物线与轴交于点,则该抛物线关于点成中心对称的抛物线的表达式为( )
A. B.
C. D.
13.(2021·天津中考真题)如图,的顶点A,B,C的坐标分别是,则顶点D的坐标是( )
A. B. C. D.
14.(2021·四川成都市·中考真题)在平面直角坐标系中,点关于x轴对称的点的坐标是( )
A. B. C. D.
15.(2021·天津中考真题)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )
A. B. C. D.
16.(2021·四川广安市·中考真题)下列几何体的主视图既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
17.(2021·湖北武汉市·中考真题)下列图形都是由一个圆和两个相等的半圆组合而成的,其中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
18.(2021·湖北宜昌市·中考真题)下列四幅图案是四所大学校徽的主体标识,其中是中心对称图形的是( )
A. B. C. D.
19.(2021·河北中考真题)如图,直线,相交于点.为这两直线外一点,且.若点关于直线,的对称点分别是点,,则,之间的距离可能是( )
A.0 B.5
C.6 D.7
20.(2021·湖北黄冈市·中考真题)下列图形中,是轴对称图形但不是中心对称图形的是( )
A.等边三角形 B.正六边形 C.正方形 D.圆
21.(2021·四川遂宁市·中考真题)下列说法正确的是( )
A.角平分线上的点到角两边的距离相等
B.平行四边形既是轴对称图形,又是中心对称图形
C.在代数式,,,,,中,,,是分式
D.若一组数据2、3、x、1、5的平均数是3,则这组数据的中位数是4
第II卷(非选择题)
请点击修改第II卷的文字说明
二、填空题
22.(2021·浙江温州市·中考真题)如图,与的边相切,切点为.将绕点按顺时针方向旋转得到,使点落在上,边交线段于点.若,则______度.
23.(2021·重庆中考真题)如图,三角形纸片ABC中,点D,E,F分别在边AB,AC,BC上,BF=4,CF=6,将这张纸片沿直线DE翻折,点A与点F重合.若DE∥BC,AF=EF,则四边形ADFE的面积为__________.
24.(2021·山东临沂市·中考真题)在平面直角坐标系中,的对称中心是坐标原点,顶点、的坐标分别是、,将沿轴向右平移3个单位长度,则顶点的对应点的坐标是___.
25.(2021·四川广安市·中考真题)如图,将三角形纸片折叠,使点、都与点重合,折痕分别为、.已知,,,则的长为_______.
26.(2021·湖南株洲市·中考真题)《蝶几图》是明朝人戈汕所作的一部组合家具的设计图(蜨,同“蝶”),它的基本组件为斜角形,包括长斜两只、右半斜两只、左半斜两只、闺一只、小三斜四只、大三斜两只,共十三只(图①中的“様”和“隻”为“样”和“只”).图②为某蝶几设计图,其中和为“大三斜”组件(“一様二隻”的大三斜组件为两个全等的等腰直角三角形),已知某人位于点处,点与点关于直线对称,连接、.若,则 ___________度.
27.(2021·四川广安市·中考真题)如图,在平面直角坐标系中,轴,垂足为,将绕点逆时针旋转到的位置,使点的对应点落在直线上,再将绕点逆时针旋转到的位置,使点的对应点也落在直线上,以此进行下去……若点的坐标为,则点的纵坐标为______.
28.(2021·湖南怀化市·中考真题)如图,在平面直角坐标系中,已知,,,将先向右平移3个单位长度得到,再绕顺时针方向旋转得到,则的坐标是____________.
三、解答题
29.(2021·安徽中考真题)如图,在每个小正方形的边长为1个单位的网格中,的顶点均在格点(网格线的交点)上.
(1)将向右平移5个单位得到,画出;
(2)将(1)中的绕点C1逆时针旋转得到,画出.
30.(2021·重庆中考真题)在中,,是边上一动点,连接,将绕点逆时针旋转至的位置,使得.
(1)如图,当时,连接,交于点.若平分,,求的长;
(2)如图,连接,取的中点,连接.猜想与存在的数量关系,并证明你的猜想;
(3)如图,在(2)的条件下,连接,.若,当,时,请直接写出的值.
31.(2021·四川成都市·中考真题)在中,,将绕点B顺时针旋转得到,其中点A,C的对应点分别为点,.
(1)如图1,当点落在的延长线上时,求的长;
(2)如图2,当点落在的延长线上时,连接,交于点M,求的长;
(3)如图3,连接,直线交于点D,点E为的中点,连接.在旋转过程中,是否存在最小值?若存在,求出的最小值;若不存在,请说明理由.
32.(2021·四川眉山市·中考真题)如图,在等腰直角三角形中,,,边长为2的正方形的对角线交点与点重合,连接,.
(1)求证:;
(2)当点在内部,且时,设与相交于点,求的长;
(3)将正方形绕点旋转一周,当点、、三点在同一直线上时,请直接写出的长.
33.(2021·浙江嘉兴市·中考真题)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形绕点顺时针旋转,得到矩形
[探究1]如图1,当时,点恰好在延长线上.若,求BC的长.
[探究2]如图2,连结,过点作交于点.线段与相等吗?请说明理由.
[探究3]在探究2的条件下,射线分别交,于点,(如图3),,存在一定的数量关系,并加以证明.
34.(2021·湖北恩施土家族苗族自治州·中考真题)如图,在平面直角坐标系中,四边形为正方形,点,在轴上,抛物线经过点,两点,且与直线交于另一点.
(1)求抛物线的解析式;
(2)为抛物线对称轴上一点,为平面直角坐标系中的一点,是否存在以点,,,为顶点的四边形是以为边的菱形.若存在,请求出点的坐标;若不存在,请说明理由;
(3)为轴上一点,过点作抛物线对称轴的垂线,垂足为,连接,.探究是否存在最小值.若存在,请求出这个最小值及点的坐标;若不存在,请说明理由.
专题19 图形的平移翻折对称(共30题)-2023年中考数学真题分项汇编(全国通用): 这是一份专题19 图形的平移翻折对称(共30题)-2023年中考数学真题分项汇编(全国通用),文件包含图形的平移翻折对称共30题解析版pdf、图形的平移翻折对称共30题学生版pdf等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。
专题19 图形的平移翻折对称(共30题)-2023年全国各地中考数学真题分项汇编(全国通用): 这是一份专题19 图形的平移翻折对称(共30题)-2023年全国各地中考数学真题分项汇编(全国通用),文件包含专题19图形的平移翻折对称共30题原卷版docx、专题19图形的平移翻折对称共30题解析版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。
专题19 图形的平移翻折对称(共30道)-2023年全国各地中考数学真题分项汇编(全国通用): 这是一份专题19 图形的平移翻折对称(共30道)-2023年全国各地中考数学真题分项汇编(全国通用),文件包含专题19图形的平移翻折对称共30道原卷版docx、专题19图形的平移翻折对称共30道解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。