2021学年6.2 排列与组合课后复习题
展开1. 1.下列问题中,组合问题的个数是( )
①从全班50人中选出5人组成班委会;
②从全班50人中选出5人分别担任班长、副班长、团支部书记、学习委员、生活委员;
③从1,2,3,…,9中任取出两个数求积;
④从1,2,3,…,9中任取出两个数求差或商.
A.1 B.2 C.3 D.4
【答案】B
【解析】对于①,从50人中选出5人组成班委会,不考虑顺序是组合问题.②为排列问题.对于③,从1,2,3,…,9中任取两个数求积是组合问题.因为乘法满足交换律,而减法和除法不满足,故④为排列问题.
2.以下四个命题,属于组合问题的是( )
A.从3个不同的小球中,取出2个排成一列
B.老师在排座次时将甲、乙两位同学安排为同桌
C.在电视节目中,主持人从100位幸运观众中选出2名幸运之星
D.从13位司机中任选出两位开同一辆车往返甲、乙两地
【答案】C[来源:Z。xx。k.Cm]
【解析】只有从100位幸运观众中选出2名幸运之星,与顺序无关,是组合问题.
3.如图,A,B,C,D为海上的四个小岛,要建三座桥,将这四个小岛连接起来,则不同的建桥方案共有________种.
【答案】16
【解析】四个小岛中每两岛建一座桥共建六座桥,其中建三座桥连接四个小岛符合要求的建桥方案是只要三座桥不围成封闭的三角形区域符合要求,如桥AC,BC,BD符合要求,而围成封闭三角形不符合要求,如桥AC、CD、DA,不符合要求,故共有Ceq \\al(3,6)-4=16种不同的建桥方案.
4.给出下列问题:
(1)从a,b,c,d四名学生中选2名学生完成一件工作,有多少种不同的选法?
(2)从a,b,c,d四名学生中选2名学生完成两件不同的工作,有多少种不同的选法?
(3)a,b,c,d四支足球队之间进行单循环比赛,共需赛多少场?
(4)a,b,c,d四支足球队争夺冠亚军,有多少种不同的结果?
(5)某人射击8枪,命中4枪,且命中的4枪均为2枪连中,不同的结果有多少种?
(6)某人射击8枪,命中4枪,且命中的4枪中恰有3枪连中,不同的结果有多少种?
在上述问题中,________是组合问题,________是排列问题.
【答案】(1)(3)(5) (2)(4)(6).
【解析】(1)2名学生完成的是同一件工作,没有顺序,是组合问题.
(2)2名学生完成两件不同的工作,有顺序,是排列问题.
(3)单循环比赛要求每两支球队之间只打一场比赛,没有顺序,是组合问题.
(4)冠亚军是有顺序的,是排列问题.
(5)命中的4枪均为2枪连中,没有顺序,是组合问题.
(6)命中的4枪中恰有3枪连中,即连中3枪和单中1枪,有顺序,是排列问题.
5.(★)从5个不同元素a,b,c,d,e中取出2个,列出所有组合为________.
【答案】ab,ac,ad,ae,bc,bd,be,cd,ce,de.
【解析】要想列出所有组合,做到不重不漏,先将元素按照一定顺序排好,然后按顺序用图示的方法将各个组合逐个地标示出来.如图所示.
6.某校开设9门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门.学校规定,每位同学选修4门,共有________种不同选修方案(用数字作答).
【答案】75
【解析】(1)这里A,B,C三门课程“至多选一门”,即A,B,C三门课程都不选,或A,B,C这三门课程恰好选一门,所以分两类完成:
第1类,A,B,C三门课程都不选,有Ceq \\al(4,6)种不同选修方案;
第2类,A,B,C三门课程恰好选修一门,有Ceq \\al(1,3)·Ceq \\al(3,6)种不同选修方案.
故共有Ceq \\al(4,6)+Ceq \\al(1,3)·Ceq \\al(3,6)=75种不同的选修方案.
7.四面体的一个顶点为A,从其他顶点和各棱中点中取3个点,使它们与点A在同一平面上,有 种不同的取法?
【答案】33
【解析】如图所示,含顶点A的四面体的3个面上,除点A外每个面都有5个点,从中取出3点必与点A共面,共有3Ceq \\al(3,5)种取法,含顶点A的三条棱上各有三个点,它们与所对的棱的中点共面,共有3种取法.根据分类加法计数原理,有3+3=33种种与顶点A共面三点的取法.
8. 从正方体的8个顶点中选4个点作一个平面,可作___________个不同的平面,从正方体的8个顶点中选4个点作一个四面体,可作___________个四面体.
【答案】12 58
【解析】正方体的8个顶点中选4个点作一个平面,共有正方体的6个面和6个对角面,共12个不同平面,故可作个四面体.
9. 平面内有12个点,其中有4个点共线,此外再无任何3点共线.以这些点为顶点,可构成多少个不同的三角形?
【解析】方法一 以从共线的4个点中取点的多少作为分类的标准.
第一类:共线的4个点中有2个点为三角形的顶点,共有=48(个)不同的三角形;
第二类:共线的4个点中有1个点为三角形的顶点,共有=112(个)不同的三角形;
第三类:共线的4个点中没有点为三角形的顶点,共有=56(个)不同的三角形.
由分类加法计数原理知,不同的三角形共有48+112+56=216(个).
方法二 (间接法):从12个点中任意取3个点,有=220种取法,而在共线的4个点中任意取3个均不能构成三角形,即不能构成三角形的情况有=4种.
故这12个点构成三角形的个数为-=216.
人教A版 (2019)选择性必修 第三册7.4 二项分布与超几何分布同步达标检测题: 这是一份人教A版 (2019)选择性必修 第三册7.4 二项分布与超几何分布同步达标检测题,共5页。
高中数学人教A版 (2019)选择性必修 第三册7.1 条件概率与全概率公式课后练习题: 这是一份高中数学人教A版 (2019)选择性必修 第三册7.1 条件概率与全概率公式课后练习题,共2页。
高中数学人教A版 (2019)选择性必修 第三册7.1 条件概率与全概率公式综合训练题: 这是一份高中数学人教A版 (2019)选择性必修 第三册7.1 条件概率与全概率公式综合训练题,共7页。试卷主要包含了已知,,则P,9,出芽后的幼苗成活率为0,所以P==等内容,欢迎下载使用。