数学五年级下册七 解决问题的策略课后作业题
展开
这是一份数学五年级下册七 解决问题的策略课后作业题,共17页。试卷主要包含了 一次,齐王与大将田忌赛马, 给定三种重量的砝码等内容,欢迎下载使用。
五年级思维训练7 枚举法1. 今年是2002年,把2002年这样的年份称为“对称年”(年份的个位数字和千位数字相同,百位数字和十位数字相同),从2000年~2999年之间共有 个“对称年”。 2. 在所有的三位数中,满足其数字和等于12的共有 个。 3. 下边的加法运算,答案824正好和上面的加数428数字顺序相反,如果选出另外一个三位数加上396后,答案也正好和所选的三位数的数字顺序相反的话,可以选出若干个这样的三位数,这样的三位数还有(除去428) 个。 428 +396 824 4. 从1、2、3、4、5、6、7、8、9中选出7个数,使得它们的和是3的倍数,共有 种不同选法。 5. 一次,齐王与大将田忌赛马。每人有四匹马,分为四等。田忌知道齐王这次比赛马的出场顺序依次为一等、二等、三等、四等,而且还知道这八匹马跑得最快的是齐王的一等马,接着依次为自己的一等,齐王的二等,自己的二等,齐王的三等,自己的三等,齐王的四等,自己的四等。田忌有 种方法安排自己的马的出场顺序,保证自己至少能赢两场比赛。 6. 小珊到邮局购买5张邮票,并要求这些邮票的式样都要相同且全部都要互相连接在一起(两张邮票之间只有顶点与顶点相连不算相连在一起)。现在邮局只存最后的9张邮票。如下图所示,为满足小珊的要求,请问邮局的职员有多少种不同的撕邮票的办法? 7. 给定三种重量的砝码(每种数量都有足够多个)3kg、11kg、17kg,将它们组合凑成100kg有 种不同的方案(每种砝码至少有一块)。 8. 将下图中20张扑克牌分成10对,每对红心和黑桃各一张。问:你能分出几对这样的牌,使两张牌上的数的乘积除以10的余数是1?(将A看成1) 9. 有五种价格分别为2元、5元、8元、11元、14元的礼品以及五种价格分别为1元、3元、5元、7元、9元的包装盒。一个礼品配一个包装盒,共有 种不同价格。 10. 在3×3的方格纸上(如图a)),用铅笔涂其中的5个方格,要求每横行和没竖行列被涂方格的个数都是奇数,如果两种涂法经过旋转后相同,则认为它们是相同类型的涂法,否则是不同类型的涂法。例如图b)和图c)是相同类型的涂法。问最多有多少种不同类型的涂法,说明理由。 11. 有3个工厂共订300份吉林日报,每个工厂订了至少99份,至多101份。问:一共有多少种不同的订法? 12. 由数字0、2、8(既可全用也可不全用)组成的非零自然数,按照从小到大排列。2008排在第 个。 13. 将日期作为数考虑。比如,1月1日是101,10月12日是1012. 如果□月△日的○日后的数,正好是□月△日的数的2倍。请问:满足条件的数○有几种可能?(注意:2月份定为28天来考虑,○是不超过365的整数。) 14. 节日期间,小明将6个彩灯排成一列,其中有2个红灯,4个绿灯,如果两个红灯不相邻,则不同的排法有 种(其中“红绿红绿绿绿”与“绿绿绿绿红绿红”类型算作一种)。 15. 如果三位数m同时满足如下条件:(1)m的各位数字之和为7;(2)2m还是三位数,且各位数字之和为5.那么这样的三位数m共有 个.A.2 B.3 C.4 D.5 E.6 16. 如果一个三位数从左到右的数码按严格递增的次序出现,则称为上升数。例如128、245、389都是上升数,而255、558、798则不是。请问在三位数中共有多少个上升数? 17. 长度分别为1、2、3、4、5、6、7、8、9、10和11厘米的细木条,它们的数量都足够多,从中适当选取3根木条作为三条边,可围成一个三角形。如果规定底边是11厘米,你能围成多少个不同的三角形? 18. 将分母为60的最简假分数按从小到大的顺序排列,第2011个分数是 。 19. 小华把数字2~9分成4对,使得每对数的和为质数。问一共有多少种不同的分法? 20. 9个大小相等的小正方形拼成了下图。现从点A走到点B,每次只能沿着小正方形的对角线从一个顶点到另一个顶点,不允许走重复路线(如图的虚线就是一种走法)。那么从点A走到点B共有 种不同的走法。 21. 满足的整数a、b、c可组成不同的有序数组(a,b,c)共有 个。
五年级思维训练7 枚举法参考答案1. 今年是2002年,把2002年这样的年份称为“对称年”(年份的个位数字和千位数字相同,百位数字和十位数字相同),从2000年~2999年之间共有 个“对称年”。【答案】10 【分析】 2000年到2999年之间的“对称年”个位为2,十位和百位数字相同,可以是0、1、2···、9,共10个,所以从2000年到2999年之间共有10个“对称年”。2. 在所有的三位数中,满足其数字和等于12的共有 个。【答案】66 【分析】方法一;按照百位数字进行分类百位数字为1时,这样的三位数有;129,138,147,···,192共8个数;百位数字为2时,这样的三位数有;219,228,···,291共9个数;依次类推,可知当百位数字依次为3~9时,这样的三位数分别有10,9,8,7,6,5,4个,所有这样的三位数共有8+9+10+9+8+7+6+5+4=66个。方法二:插板法,至少每位数字都是1的情况有 ==55个,其中包括10,1,1,的三种情况不符合要求,55-3=52;包含0的情况又有:309、390、408、480、507、570、606、660、705、750、804、840、903、930共14种,52+14=66(个)。3. 下边的加法运算,答案824正好和上面的加数428数字顺序相反,如果选出另外一个三位数加上396后,答案也正好和所选的三位数的数字顺序相反的话,可以选出若干个这样的三位数,这样的三位数还有(除去428) 个。 428 +396 824 【答案】49 【分析】设这样的三位数为,则有,有99(c-a)=396,则c-a=4,有9-5=8-4=7-3=6-2=5-1=4,而十位数字可以从0~9中任意取,所以三位数共有5×10=50个,除去428还有49个。 4. 从1、2、3、4、5、6、7、8、9中选出7个数,使得它们的和是3的倍数,共有 种不同选法。【答案】12 【分析】 因为1+2+3+···+9=(1+9)÷2×9=45,所有这9个数的和是3的倍数,因此,只需要剩下2个数之和是3的倍数即可。从3、6、9中任选2个有3种不同选法。从1、2、4、5、7、8中选2个,其和为3的倍数的有(1,2)、(1,5)、(1,8)、(2,4)、(2,7)、(4,5)、(4,8)、(5,7)、(7,8),即有9种不同选法。因此,共有3+9=12种不同选法。5. 一次,齐王与大将田忌赛马。每人有四匹马,分为四等。田忌知道齐王这次比赛马的出场顺序依次为一等、二等、三等、四等,而且还知道这八匹马跑得最快的是齐王的一等马,接着依次为自己的一等,齐王的二等,自己的二等,齐王的三等,自己的三等,齐王的四等,自己的四等。田忌有 种方法安排自己的马的出场顺序,保证自己至少能赢两场比赛。【答案】12 【分析】用一个四位数表示田忌的马的出场顺序,按照顺序枚举出所有方法:1423、2143、2413、3124、3142、3412、3421、4123、4132、4213、4312、4321,所有共有12种方法。6. 小珊到邮局购买5张邮票,并要求这些邮票的式样都要相同且全部都要互相连接在一起(两张邮票之间只有顶点与顶点相连不算相连在一起)。现在邮局只存最后的9张邮票。如下图所示,为满足小珊的要求,请问邮局的职员有多少种不同的撕邮票的办法? 【答案】15 【分析】根据题意我们可以把邮票从上到下分成三层考虑,并标上相应数字如下图,按第一层所含邮票个数由多到少分类枚举。 1234567 8 9 第一层4张邮票的第一层3张邮票的;第一层2张邮票的;第一层1张邮票的;共有3+6+4+2=15(种)。 7. 给定三种重量的砝码(每种数量都有足够多个)3kg、11kg、17kg,将它们组合凑成100kg有 种不同的方案(每种砝码至少有一块)。 【答案】6 【分析】 枚举:100=17×1+11×1+3×24,100=17×1+11×4+3×13,100=17×1+11×7+3×2,100=17×4+11×1+3×7,100=17×2+11×3+3×11,100=17×3+11×2+3×9,一共有6种方法。 8. 将下图中20张扑克牌分成10对,每对红心和黑桃各一张。问:你能分出几对这样的牌,使两张牌上的数的乘积除以10的余数是1?(将A看成1) 【答案】4 【分析】本题实际上是求1到10这些数中,取出2个数(可以重复)相乘,能组成几个乘积个位是1的数,显然,偶数不成,所以只能是1×1,3×7,7×3和9×9,共4对。 9. 有五种价格分别为2元、5元、8元、11元、14元的礼品以及五种价格分别为1元、3元、5元、7元、9元的包装盒。一个礼品配一个包装盒,共有 种不同价格。 【答案】19 【分析】方法一:有序枚举,枚举与筛选;从小到大去掉重复的和,共19种。方法二:排除法,搭配的最小值是3,最大值是23,23-3+1=21(种)价格,其中无法搭配出4和22这两种价格,所以共有21-2=19(种)不同的价格。10. 在3×3的方格纸上(如图a)),用铅笔涂其中的5个方格,要求每横行和没竖行列被涂方格的个数都是奇数,如果两种涂法经过旋转后相同,则认为它们是相同类型的涂法,否则是不同类型的涂法。例如图b)和图c)是相同类型的涂法。问最多有多少种不同类型的涂法,说明理由。 【答案】3 【分析】不同类型的涂法有3种,如下图所示。所涂5个阴影方格分布在3行中,只有一行涂有3个阴影方格。同样,仅有一列涂有3个阴影方格。所以,仅有一个方格,它所在的行和列均有3个阴影方格,有这种性质的方格称为“特征阴影方格”。“特征阴影方格”在3×3正方格纸中的位置,就唯一地决定了3×3的方格纸的涂法。“特征阴影方格”在方格纸的角上(上左图)、外边中间的方格(上中图)和中心的方格(上右图)三个位置确定了只有3种类型的涂法。 11. 有3个工厂共订300份吉林日报,每个工厂订了至少99份,至多101份。问:一共有多少种不同的订法? 【答案】7 【分析】第一类情况:一个工厂订了99份,一个工厂订了100份,一个工厂订了101份,共有3!=6种订法,第二类情况:每个工厂订100份,共有1种订法,综上,共有7种订法。 12. 由数字0、2、8(既可全用也可不全用)组成的非零自然数,按照从小到大排列。2008排在第 个。【答案】29 【分析】从小到大,一位数有2个,两位数有6个,三位数有2×3×3=18个,接着是2000,2002、2008···,因此2008排在第2+6+18+3=29个。 13. 将日期作为数考虑。比如,1月1日是101,10月12日是1012. 如果□月△日的○日后的数,正好是□月△日的数的2倍。请问:满足条件的数○有几种可能?(注意:2月份定为28天来考虑,○是不超过365的整数。)【答案】89 【分析】除了1月15日对应的数没有办法变成2月30日对应的数(由于2月只有28天),从1月到6月每个月前15天的日期数都可以作相应操作,所有满足条件的○有15×6-1=89种可能。 14. 节日期间,小明将6个彩灯排成一列,其中有2个红灯,4个绿灯,如果两个红灯不相邻,则不同的排法有 种(其中“红绿红绿绿绿”与“绿绿绿绿红绿红”类型算作一种)。【答案】6 【分析】红灯看做“1”,绿灯看做“0”则有:000101、001001、001010、010001、010010、100001这六种。 15. 如果三位数m同时满足如下条件:(1)m的各位数字之和为7;(2)2m还是三位数,且各位数字之和为5.那么这样的三位数m共有 个.A.2 B.3 C.4 D.5 E.6【答案】D 【分析】如果三位数乘以2的运算中没有进位,那么它的数字和应该是7×2=14.而实际上数字和是5,比14少了9,说明在运算过程中恰有一次进位,那么原先三位数中一定有一个数字不小于5。又因为乘以2之后还是三位数,说明不小于5的那个数字不在首位,那么这样的三位数有205、250、115、151、106、160,共6个。16. 如果一个三位数从左到右的数码按严格递增的次序出现,则称为上升数。例如128、245、389都是上升数,而255、558、798则不是。请问在三位数中共有多少个上升数?【答案】84 【分析】方法一:可知百位数为1的上升数有7+6+5+4+3+2+1=28个,百位数为2的上升数有6+5+4+3+2+1=21个,百位数为3的上升数有5+4+3+2+1=15个,百位数为4的上升数有4+3+2+1=10个,百位数为5的上升数有3+2+1=6个,百位数为6的上升数有2+1=3个,百位数为7的上升数有1个,因此共有28+21+15+10+6+3+1=84个。方法二:只需要从1~9选择3个数字,它们的大小顺序就随之确定了,所有方法数为。17. 长度分别为1、2、3、4、5、6、7、8、9、10和11厘米的细木条,它们的数量都足够多,从中适当选取3根木条作为三条边,可围成一个三角形。如果规定底边是11厘米,你能围成多少个不同的三角形? 【答案】36 【分析】一个三角形,任何两条边的长度之和,比余下的一条边长。在本题中,设底边是11厘米的三角形其余二边分别是a及b,则必有11<a+b,此外,为确切起见,可设a<b,于是(a,b)的可能的值有(11,11);(10,10);(10,11);(9,9);(9,10);(9,11);(8,8);(8,9);(8,10);(811);(7,7);(7,8);(7,9);(7,10);(7,11);(6,6);(6,7);(6,8);(6,9);(6,10);(6,11);(5,7);(5,8);(5,9);(5,10);(5,11);(4,8);(4,9);(4,10);(4,11);(3,9);(3,10);(3,11);(2,10);(2,11);(1,11)共36种。18. 将分母为60的最简假分数按从小到大的顺序排列,第2011个分数是 。 【答案】 【分析】将假分数化成带分数,求出第2011个分数,再把这个带分数化成假分数就可以了,分母是60的最简真分数共有16个,把它们从小到大排列起来。依次是:由此可知,分母为60的最简假分数化成带分数后,由小到大依次排列,整数部分分别为1,2,3,4,···也是各有16个,即因此2011÷16=125······11,所有第2011个带分数的整数部分是125+1=126,分数部分是第11个,就是,那么第2011个带分数是126,化成假分数是。 19. 小华把数字2~9分成4对,使得每对数的和为质数。问一共有多少种不同的分法?【答案】6 【分析】由题目的条件可知,每对数必须由一个奇数和一个偶数组成,为了不遗漏,我们从小到大选取2,3,···,9中的数进行配对。能够和2配对的数有3,5,9。下面分情况讨论;(a)2和3配成一对。则剩下最小的数为4。在剩下的数中,能够和4配对的数有7,9;4和7配成一对,则5只能和6配对,8和9配对,4和9配成一对,则5只能和8配对,6和7配对。所有这种情况一共有2种分法。(b)2和5配成一对,则剩下最小的数为3.在剩下的数中,能够和3配对的数有4、8.3和4配成一对,则6只能和7配对,8和9配对。3和8配成一对,则4只能和9配对,6和7配对。所有这种情况一共有2种分法。(c)2和9配成一对,则剩下最小的数为3.在剩下的数中,能够和3配对的倍数有4,8.3和4配成一对,则5只能和8配对,6和7配对。3和8配成一对,则4只能和7配对,5和6配对。所有这种情况一共有2种分法。综上所述,一共有2+2+2=6种不同的分法。 20. 9个大小相等的小正方形拼成了下图。现从点A走到点B,每次只能沿着小正方形的对角线从一个顶点到另一个顶点,不允许走重复路线(如图的虚线就是一种走法)。那么从点A走到点B共有 种不同的走法。【答案】9 【分析】如右图所示,将相应顶点标上字母,那么走法有:A→G→L→B,A→G→J→O→L→B,A→G→D→I→L→B,A→G→J→O→L→I→D→G→L→B,A→G→D→I→L→O→J→G→L→B,A→G→L→O→J→G→D→I→L→B,A→G→L→I→D→G→J→O→L→B,A→G→J→O→L→G→D→I→L→B,A→G→D→I→L→G→J→O→L→B,共有9种不同的走法。 满足的整数a、b、c可组成不同的有序数组(a,b,c)共有 个。【答案】25 【分析】,a、b、c为整数不妨设a≤b≤c,则,∴a≤4当a=4时,b=c=4当a=3时,则,b≤4b=4时,c=6b=3时,c=12当a=2时,则,4<b≤8有b=8时,c=8b=7时,c无解b=6时,c=12B=5时,c=20即a、b、c都取4时,有序数组有1个;a、b、c取3、4、5时,有序数组有6个;a、b、c取3、3、12时,有序数组有3个;a、b、c取2、8、8时,有序数组有3个;a、b、c取2、6、12时,有序数组有6个;a、b、c取2、5、20时,有序数组有6个;得不同有序数组共有1+6+3+3+6+6=25个。
相关试卷
这是一份专题10 简单枚举 2022-2023学年三年级数学思维拓展精编讲义(原卷+解析)通用版,文件包含专题10简单枚举解析docx、专题10简单枚举原卷docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
这是一份苏教版五下数学思维训练2 四则运算(原卷+解析版),共12页。
这是一份小学数学苏教版五年级下册七 解决问题的策略课后复习题,共9页。试卷主要包含了1+0等内容,欢迎下载使用。