(全国通用)备战中考数学一轮复习专题讲义+强化训练 第二十讲 多边形与平行四边形(强化训练)
展开备战2022年中考数学一轮复习专题讲义+强化训练(全国通用)
第二十讲 多边形与平行四边形
考点一 多边形的内角与外角
考点二 平行四边形的性质与判定
考点三 三角形中位线
考点一 多边形的内角与外角
1.如图,在六边形ABCDEF中,若∠1+∠2=90°,则∠3+∠4+∠5+∠6=( )
A.180° B.240° C.270° D.360°
2.如图,是可调躺椅示意图,AE与BD的交点为C,且∠A,∠B,∠E保持不变.为了舒适,需调整∠D的大小,使∠EFD=110°.根据图中数据信息,下列调整∠D大小的方法正确的是( )
A.增大10° B.减小10° C.增大15° D.减小15°
3.如图,桐桐从A点出发,前进3m到点B处后向右转20°,再前进3m到点C处后又向右转20°,…,这样一直走下去,她第一次回到出发点A时,一共走了( )
A.100m B.90m C.54m D.60m
考点二 平行四边形的性质与判定
4.已知:在平行四边形ABCD中,过点C作CH⊥AB,过点B作AC的垂线,分别交CH、AC、AD于点E、F、G,且∠ABC=∠BEH,BG=BC.
(1)若BE=10,BC=25,求DG的值;
(2)连接HF,证明:HA=HF﹣HE.
5.如图,在平行四边形ABCD中,连接AC,AD=AC,过点D作DF⊥AC交BC于点F,交AC于点E,连接AF.
(1)若AE=4,DE=2EC,求EC的长.
(2)延长AC至点H,连接FH,使∠H=∠EDC,若AB=AF=FH,求证:FD+FC=AD.
6.在平行四边形ABCD中,点E是AD边上的点,连接BE.
(1)如图1,若BE平分∠ABC,BC=8,ED=3,求平行四边形ABCD的周长;
(2)如图2,点F是平行四边形外一点,FB=CD.连接BF、CF,CF与BE相交于点G,若∠FBE+∠ABC=180°,点G是CF的中点,求证:2BG+ED=BC.
7.在平行四边形ABCD中,点E是AD边上一点,连接CE,交对角线BD于点F,过点A作AB的垂线交BD的延长线于点G,过B作BH垂直于CE,垂足为点H,交CD于点P,2∠1+∠2=90°.
(1)若PH=2,BH=4,求PC的长;
(2)若BC=FC,求证:GF=PC.
8.如图.在平行四边形ABCD中(BC>AB),过A作AF⊥BC,垂足为F,过C作CH⊥AB,垂足为H,交AF于G,点E为FC上一点,且GE⊥ED.
(1)若FC=2BF=4,AB=2,求平行四边形ABCD的面积;
(2)若AF=FC,F为BE中点,求证:ED=(AD+AG).
9.在平行四边形ABCD中,对角线AC、BD交于点O,若AB=BC,过点A作BC的垂线交BC于点E,交BD于点M,∠ABC>60°.
(1)若ME=3,BE=4,求EC的长度.
(2)如图,延长CE至点G;使得EC=GE;过点G作GF垂直于AB的延长线于点H,交AE的延长线于点F,
求证:AE=GF+EF.
10.在平行四边形ABCD中,CE⊥BA,交BA的延长线于点E.
(1)如图1,连接AC,若AC=2,AE=2,BC=10,求▱ABCD的面积.
(2)如图2,延长CD至点G,使得CD=DG,连接BG交AD于点F,连接EF,FC.求证:EF=CF.
11.在平行四边形ABCD中,AC、BD相交于点O,且AC=AD
(1)如图①,过点A作AE⊥于BC于E,若BC=10,AE=6,求AB边的长.
(2)如图②,过点C作CF⊥CD交BD于F,在▱ABCD外有一点G,连接AG,使得AG=2OF且∠BAG=∠BFC,连接BG、DG,若CD=CF,求证:BG⊥BC.
12.已知点P是平行四边形ABCD对角线BD上的一点,分别过点B、D作AP的垂线,垂足分别为点E、F,
(1)如图1,若点P为BD中点,∠BAP=30°,AD=5,CD=8,求AF的长;
(2)如图2,若点E在CD上,BE=DE,延长DF至G,使DG=AB,点H在BD上,连接AH、GH、EH、FH,若∠G=∠BAH,求证:HE=HF.
13.在▱ABCD中,∠ABC=45°,AB=AC,点E、F分别是CD、AC边上的点,且AF=CE,BF的延长线交AE于点G.
(1)若DE=2,AD=6,求AE的长;
(2)若G是AE的中点,连接CG,求证:2BG=BF+AE.
考点三 三角形中位线
14.如图,在△ABC中,BM、CN平分∠ABC和∠ACB的外角,AM⊥BM于M,AN⊥CN于N,AB=10,BC=13,AC=6,则MN= .
15.如图,四边形ABCD中,∠A=90°,AB=4,AD=3,点M,N分别为线段BC,AB上的动点(点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为 .
16.如图,在△ABC中,∠A=90°,AC>AB>10,点D,E分别在边AB,AC上,且BD=8,CE=6,连接DE,点M是DE的中点,点N是BC的中点,则线段MN的长为 .
17.△ABC中,点D是BC中点,∠A=2∠BED,AB=9,AC﹣AE=3,则BE= .
(全国通用)备战中考数学一轮复习专题讲义+强化训练 第二十一讲 特殊的平行四边形(强化训练): 这是一份(全国通用)备战中考数学一轮复习专题讲义+强化训练 第二十一讲 特殊的平行四边形(强化训练),文件包含全国通用备战2022年中考数学一轮复习专题第二十一讲特殊的平行四边形强化训练解析版docx、全国通用备战2022年中考数学一轮复习专题第二十一讲特殊的平行四边形强化训练原卷版docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。
(全国通用)备战中考数学一轮复习专题讲义+强化训练 第二十五讲 视图与投影(强化训练): 这是一份(全国通用)备战中考数学一轮复习专题讲义+强化训练 第二十五讲 视图与投影(强化训练),文件包含全国通用备战2022年中考数学一轮复习专题第二十五讲视图与投影强化训练解析版doc、全国通用备战2022年中考数学一轮复习专题第二十五讲视图与投影强化训练原卷版doc等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
(全国通用)备战中考数学一轮复习专题讲义+强化训练 第二十四讲 圆(强化训练): 这是一份(全国通用)备战中考数学一轮复习专题讲义+强化训练 第二十四讲 圆(强化训练),文件包含全国通用备战2022年中考数学一轮复习专题第二十四讲圆强化训练解析版doc、全国通用备战2022年中考数学一轮复习专题第二十四讲圆强化训练原卷版doc等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。