(全国通用)2022年中考数学命题点及重难题型分类突破练 第二十二讲 尺规作图与无刻度直尺作图(原卷版+解析版)
展开第二十二讲尺规作图与无刻度直尺作图
命题点1五种基本尺规作图
类型一判断作图结果
1.已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是( )
A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD
2.过直线l外一点P作直线l的平行线,下列尺规作图中错误的是( )
3.如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:
(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;
(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;
(3)连接BD,BC.
下列说法不正确的是( )
A.∠CBD=30° B.S△BDC= C.点C是△ABD的外心 D.sin2A+cos2D=1
4.尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:
①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;
②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;
③连结OG.
问:OG的长是多少?
大臣给出的正确答案应是( )
A.r B.(1+)r C.(1+)r D.r
类型二根据作图步骤进行计算、证明或结论判断
5.已知,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以M,N为圆心,以大于的长度为半径作弧,两弧在内交于点P,以OP为边作,则的度数为( ).
A. B. C.或 D.或
6.如图,∠BPD=120°,点A、C分别在射线PB、PD上,∠PAC=30°,AC=2.
(1)用尺规在图中作一段劣弧,使得它在A、C两点分别与射线PB和PD相切.要求:写出作法,并保留作图痕迹;
(2)根据(1)的作法,结合已有条件,请写出已知和求证,并证明;
(3)求所得的劣弧与线段PA、PC围成的封闭图形的面积.
7.尺规作图要求:ⅰ.过直线外一点作这条直线的垂线;ⅱ.作线段的垂直平分线;
ⅲ.过直线上一点作这条直线的垂线;ⅳ.作角的平分线.如图是按上述要求排乱顺序的尺规作图:
则正确的配对是( )
A.①—ⅳ,②—ⅱ,③—ⅰ,④—ⅲ B. ①—ⅳ,②—ⅲ,③—ⅱ,④—ⅰ
C.①—ⅱ,②—ⅳ,③—ⅲ,④—ⅰ D. ①—ⅳ,②—ⅰ,③—ⅱ,④—ⅲ
8.如图,△ABC中,∠C=90º, AC=4, BC=8.
(1)用直尺和圆规作AB的垂直平分线; (保留作图痕迹,不要求写作法)
(2)若(1)中所作的垂直平分线交BC于点D,求BD的长.
9.如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E,若DE=2,CE=3,则矩形的对角线AC的长为 .
10.如图,在△ABC中,AB=5,AC=4,BC=3. 按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AC于点M、N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点E;③作射线AE;④以同样的方法作射线BF. AE交BF于点O,连接OC,则OC= .
类型三依据要求直接作图
11.已知:如图,,射线上一点.
求作:等腰,使线段为等腰的底边,点在内部,且点到两边的距离相等. (请用直尺、圆规作图,不写作法,但要保留作图痕迹.)
12.如图,点在的边上,以OB为半径作⊙O,的平分线交⊙O于点,过点作于点.
(1)尺规作图(不写作法,保留作图痕迹),补全图形;
(2)判断⊙O与交点的个数,并说明理由.
类型四转化类作图
13.如图,点M和点N在∠AOB内部.
(1)请你作出点P,使点P到点M和点N的距离相等,且到∠AOB两边的距离也相等(保留作图痕迹,不写作法);
(2)请说明作图理由.
14.按要求作图,不要求写作法,但要保留作图痕迹
(1)如图1,A为圆O上一点,请用直尺(不带刻度)和圆规作出得内接正方形;
(2)我们知道,三角形具有性质,三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高交于同一点,请运用上述性质,只用直尺(不带刻度)作图:
② 如图2,在□ABCD中,E为CD的中点,作BC的中点F;
②图3,在由小正方形组成的网格中,的顶点都在小正方形的顶点上,作△ABC的高AH.
命题点2无刻度直尺作图
类型一网格中作图
15.如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.
(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG=90°;
(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP=NQ.
注:图1,图2在答题纸上.
16.在6×6的方格纸中,点A,B,C都在格点上,按要求画图:
(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.
(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).
17.在8×5的网格中建立如图的平面直角坐标系,四边形OABC的顶点坐标分别为O(0,0),A(3,4),B(8,4),C(5,0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:
(1)将线段CB绕点C逆时针旋转90°,画出对应线段CD;
(2)在线段AB上画点E,使∠BCE=45°(保留画图过程的痕迹);
(3)连接AC,画点E关于直线AC的对称点F,并简要说明画法.
类型二根据图形性质作图
18.求证:相似三角形对应边上的中线之比等于相似比.
要求:①根据给出的△ABC及线段A′B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A′B′C′,使得△A′B′C′∽△ABC,不写作法,保留作图痕迹;
②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.
19.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.
已知:直线l及直线l外一点P.
求作:直线PQ,使得PQ∥l.
作法:如图:
①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延
长线于点B;
②直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;
③作直线PQ.
所以直线PQ就是所求作的直线.
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:∵AB=_______,CB=_______,
∴PQ∥l(________________)(填推理的依据).
20.在平行四边形ABCD中,E为AD的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.
(1)如图1,在BC上找出一点M,使点M是BC的中点;
(2)如图2,在BD上找出一点N,使点N是BD的一个三等分点.
21.如图,在△ABC中,D是BC边上一点,且BD=BA.
(1)尺规作图(保留作图痕迹,不写作法):
①作∠ABC的角平分线交AD于点E;
②作线段DC的垂直平分线交DC于点F.
(2)连接EF,直接写出线段EF和AC的数量关系及位置关系.
(全国通用)2022年中考数学命题点及重难题型分类突破练 类型五 其他类型(原卷版+解析版): 这是一份(全国通用)2022年中考数学命题点及重难题型分类突破练 类型五 其他类型(原卷版+解析版),文件包含全国通用2022年中考数学命题点及重难题型分类突破练类型五其他类型解析版docx、全国通用2022年中考数学命题点及重难题型分类突破练类型五其他类型原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
(全国通用)2022年中考数学命题点及重难题型分类突破练 模型十 主从联动(原卷版+解析版): 这是一份(全国通用)2022年中考数学命题点及重难题型分类突破练 模型十 主从联动(原卷版+解析版),文件包含全国通用2022年中考数学命题点及重难题型分类突破练模型十主从联动解析版docx、全国通用2022年中考数学命题点及重难题型分类突破练模型十主从联动原卷版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
(全国通用)2022年中考数学命题点及重难题型分类突破练 第二十五讲 统计(原卷版+解析版): 这是一份(全国通用)2022年中考数学命题点及重难题型分类突破练 第二十五讲 统计(原卷版+解析版),文件包含全国通用2022年中考数学命题点及重难题型分类突破练第二十五讲统计解析版doc、全国通用2022年中考数学命题点及重难题型分类突破练第二十五讲统计原卷版doc等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。