![2022年九年级中考复习数学考点训练——几何专题:《四边形综合》(五)及答案第1页](http://www.enxinlong.com/img-preview/2/3/12850549/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年九年级中考复习数学考点训练——几何专题:《四边形综合》(五)及答案第2页](http://www.enxinlong.com/img-preview/2/3/12850549/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年九年级中考复习数学考点训练——几何专题:《四边形综合》(五)及答案第3页](http://www.enxinlong.com/img-preview/2/3/12850549/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022年九年级中考复习数学考点训练——几何专题:《四边形综合》(五)及答案
展开
这是一份2022年九年级中考复习数学考点训练——几何专题:《四边形综合》(五)及答案,共20页。试卷主要包含了解答下列各题,实践操作,问题发现等内容,欢迎下载使用。
备战2022年九年级中考复习数学考点训练——
几何专题:《四边形综合》(五)
1.解答下列各题
(1)已知:如图1,直线AB、CD被直线AC所截,点E在AC上,且∠A=∠D+∠CED,求证:AB∥CD;
(2)如图2,在正方形ABCD中,AB=8,BE=6,DF=4.
①试判断△AEF的形状,并说明理由;
②求△AEF的面积.
2.如图,△ABC中,点O是AC上一动点,过点O作直线MN∥BC,若MN交∠BCA的平分线于点E,交∠DCA的平分线于点F,连接AE、AF.
(1)说明:OE=OF;
(2)当点O运动到AC中点处时,求证:四边形AECF是矩形;
(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF为正方形,并加以证明.
3.实践操作:
第一步:如图1,将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,然后把纸片展平.
第二步:如图2,将图1中的矩形纸片ABCD沿过点E的直线折叠,点C恰好落在AD上的点C′处,点B落在点B'处,得到折痕EF,B'C′交AB于点M,C′F交DE于点N,再把纸片展平.
问题解决:
(1)如图1,填空:四边形AEA'D的形状是 ;
(2)如图2,线段MC′与ME是否相等?若相等,请给出证明;若不等,请说明理由;
(3)如图2,若AC′=2cm,DC'=4cm,求DN:EN的值.
4.如图,在平面直角坐标系中,矩形ABCD的边AB在x轴上,AB、BC的长分别是一元二次方程x2﹣7x+12=0的两个根(BC>AB),OA=2OB,边CD交y轴于点E,动点P以每秒1个单位长度的速度,从点E出发沿折线段ED﹣DA向点A运动,运动的时间为t(0≤t<6)秒,设△BOP与矩形AOED重叠部分的面积为S.
(1)求点D的坐标;
(2)求S关于t的函数关系式,并写出自变量的取值范围;
(3)在点P的运动过程中,是否存在点P,使△BEP为等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.
5.如图,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA(不包括端点)上运动,且满足AE=CG,AH=CF.
(1)求证:△AEH≌△CGF;
(2)试判断四边形EFGH的形状,并说明理由.
(3)请探究四边形EFGH的周长一半与矩形ABCD一条对角线长的大小关系,并说明理由.
6.如图,在矩形ABCD中,AB═2,AD=,P是BC边上的一点,且BP=2CP.
(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);
(2)如图②,在(1)的条件下,判断EB是否平分∠AEC,并说明理由;
(3)如图③,在(2)的条件下,连接EP并延长交AB的延长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)
7.如图①,菱形ABCD中,AB=5cm,动点P从点B出发,沿折线BC﹣CD﹣DA运动到点A停止,动点Q从点A出发,沿线段AB运动到点B停止,它们运动的速度相同,设点P出发xs时,△BPQ的面积为ycm2.已知y与x之间的函数关系如图②所示,其中OM、MN为线段,曲线NK为抛物线的一部分.请根据图中的信息,解答下列问题:
(1)当1<x<2时,△BPQ的面积 (填“变”或“不变”);
(2)分别求出线段OM,曲线NK所对应的函数表达式;
(3)当x为何值时,△BPQ的面积是5cm2?
8.如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在直线折叠,点B落在点D处,DC与y轴相交于点E,矩形OABC的边OC,OA的长是关于x的一元二次方程x2﹣12x+32=0的两个根,且OA>OC.
(1)求线段OA,OC的长;
(2)求证:△ADE≌△COE,并求出线段OE的长;
(3)直接写出点D的坐标;
(4)若F是直线AC上一个动点,在坐标平面内是否存在点P,使以点E,C,P,F为顶点的四边形是菱形?若存在,请直接写出P点的坐标;若不存在,请说明理由.
9.已知四边形ABCD是正方形,等腰直角△AEF的直角顶点E在直线BC上(不与点B,C重合),FM⊥AD,交射线AD于点M.
(1)当点E在边BC上,点M在边AD的延长线上时,如图①,求证:AB+BE=AM;
(提示:延长MF,交边BC的延长线于点H.)
(2)当点E在边CB的延长线上,点M在边AD上时,如图②;当点E在边BC的延长线上,点M在边AD上时,如图③.请分别写出线段AB,BE,AM之间的数量关系,不需要证明;
(3)在(1),(2)的条件下,若BE=,∠AFM=15°,则AM= .
10.问题发现
(1)如图(1),四边形ABCD中,若AB=AD,CB=CD,则线段BD,AC的位置关系为 ;
拓展探究
(2)如图(2),在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在Rt△ABC外部作等腰三角形ABD 和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N,试猜想四边形FMAN的形状,并说明理由;
解决问题
(3)如图(3),在正方形ABCD中,AB=2,以点A为旋转中心将正方形ABCD旋转60°,得到正方形AB′C′D′,请直接写出BD′的长度.
参考答案
1.解:(1)延长AC至F,如图1,
∵∠FCD=∠CED+∠D,∠A=∠D+∠CED,
∴∠FCD=∠A,
∴AB∥CD;
(2)①如图2,延长AF交BC的延长线于点G,
∵正方形ABCD中,AB=8,CF=4,
∴DF=CF=4,
∵∠D=∠FCG=90°,∠AFD=∠CFG,
∴△ADF≌△GCF(ASA),
∴AF=FG,
∵AB=8,BE=6,
∴AE===10,
∵EG=CE+CG=2+8=10,
∴AE=EG,
∴EF⊥AG,
∴△AEF是直角三角形;
②S△AEF=S正方形ABCD﹣S△ABE﹣S△ADF﹣S△CEF
=64﹣,
=20.
2.(1)证明:∵MN∥BC,
∴∠OFC=∠FCD,
又∵CF平分∠ACD,
∴∠OCF=∠FCD,
∴∠OFC=∠OCF,
∴OF=OC,
同理:OE=OC,
∴OE=OF.
(2)证明:当点O运动到AC中点处时,OA=OC,
由第(1)知,OE=OF,
∴四边形AECF是平行四边形.
∵OC=OF,
∴OA=OC=OF=OE,
∴AC=EF,
∴四边形AECF是矩形.
(3)解:当点O运动到AC中点处时,且△ABC满足∠ACB是直角的直角三角形时,四边形AECF为正方形.
理由如下:
∵由第(2)问知,当点O运动到AC中点处时,四边形AECF是矩形.
∵MN∥BC,
∴当∠ACB=90°时,AC⊥EF,四边形AECF是菱形.
∴此时四边形AECF是正方形.
∴△ABC满足∠ACB是直角的直角三角形时,四边形AECF为正方形.
3.解:(1)∵ABCD是矩形,
∴∠A=∠ADC=90°,
∵将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,
∴AD=A′D,AE=A′E,∠ADE=∠A′DE=45°,
∵AB∥CD,
∴∠AED=∠A′DE=∠ADE,
∴AD=AE,
∴AD=AE=A′E=A′D,
∴四边形AEA′D是菱形,
∵∠A=90°,
∴四边形AEA′D是正方形.
故答案为:正方形;
(2)MC′=ME.
证明:如图1,连接C′E,由(1)知,AD=AE,
∵四边形ABCD是矩形,
∴AD=BC,∠EAC′=∠B=90°,
由折叠知,B′C′=BC,∠B=∠B′,
∴AE=B′C′,∠EAC′=∠B′,
又EC′=C′E,
∴Rt△EC′A≌Rt△C′EB′(HL),
∴∠C′EA=∠EC′B′,
∴MC′=ME;
(3)∵Rt△EC′A≌Rt△C′EB′,
∴AC′=B′E,
由折叠知,B′E=BE,
∴AC′=BE,
∵AC′=2cm,DC′=4cm,
∴AB=CD=2+4+2=8(cm),
设DF=xcm,则FC′=FC=(8﹣x)cm,
∵DC′2+DF2=FC′2,
∴42+x2=(8﹣x)2,
解得,x=3,
即DF=3cm,
如图2,延长BA、FC′交于点G,则∠AC′G=∠DC′F,
∴tan∠AC′G=tan∠DC′F=,
∴,
∴,
∵DF∥EG,
∴△DNF∽△ENG,
∴.
4.解:(1)∵x2﹣7x+12=0,
∴x1=3,x2=4,
∵BC>AB,
∴BC=4,AB=3,
∵OA=2OB,
∴OA=2,OB=1,
∵四边形ABCD是矩形,
∴点D的坐标为(﹣2,4);
(2)设BP交y轴于点F,
如图1,当0≤t≤2时,PE=t,
∵CD∥AB,
∴△OBF∽△EPF,
∴=,即=,
∴OF=,
∴S=OFPE=t=;
如图2,当2<t<6时,AP=6﹣t,
∵OE∥AD,
∴△OBF∽△ABP,
∴=,即=,
∴OF=,
∴S=OFOA=××2=﹣t+2;
综上所述,S=;
(3)由题意知,当点P在DE上时,显然不能构成等腰三角形;
当点P在DA上运动时,设P(﹣2,m),
∵B(1,0),E(0,4),
∴BP2=9+m2,BE2=1+16=17,PE2=4+(m﹣4)2=m2﹣8m+20,
①当BP=BE时,9+m2=17,解得m=±2,
则P(﹣2,2);
②当BP=PE时,9+m2=m2﹣8m+20,解得m=,
则P(﹣2,);
③当BE=PE时,17=m2﹣8m+20,解得m=4±,
则P(﹣2,4﹣);
综上,P(﹣2,2)或(﹣2,)或(﹣2,4﹣).
5.证明:(1)∵四边形ABCD是矩形,
∴∠A=∠C.
∴在△AEH与△CGF中,,
∴△AEH≌△CGF(SAS);
(2)四边形EFGH是平行四边形,理由如下:
∵由(1)知,△AEH≌△CGF,则EH=GF,同理证得△EBF≌△GDH,则EF=GH,
∴四边形EFGH是平行四边形;
(3)四边形EFGH的周长一半大于或等于矩形ABCD一条对角线长度.
理由如下:作G关于BC的对称点G′,连接EG′,可得EG′的长度就是EF+FG的最小值.
连接AC,
∵CG′=CG=AE,AB∥CG′,
∴四边形AEG′C为平行四边形,
∴EG′=AC.
在△EFG′中,∵EF+FG′>EG′=AC,
∴四边形EFGH的周长一半大于或等于矩形ABCD一条对角线长度.
6.解:(1)依题意作出图形如图①所示,
(2)EB是平分∠AEC,理由:
∵四边形ABCD是矩形,
∴∠C=∠D=90°,CD=AB=2,BC=AD=,
∵点E是CD的中点,
∴DE=CE=CD=1,
在△ADE和△BCE中,,
∴△ADE≌△BCE(SAS),
∴∠AED=∠BEC,
在Rt△ADE中,AD=,DE=1,
∴tan∠AED==,
∴∠AED=60°,
∴∠BEC=∠AED=60°
∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,
∴BE平分∠AEC;
(3)∵BP=2CP,BC=,
∴CP=,BP=,
在Rt△CEP中,tan∠CEP==,
∴∠CEP=30°,
∴∠BEP=30°,
∴∠AEP=90°,
∵CD∥AB,
∴∠F=∠CEP=30°,
在Rt△ABP中,tan∠BAP==,
∴∠PAB=30°,
∴∠EAP=30°=∠F=∠PAB,
∵CB⊥AF,
∴AP=FP,
∴△AEP≌△FBP,
∴△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,
变换的方法为:①将△BPF绕点P顺时针旋转120°和△EPA重合,再沿PE折叠,
②将△BPF以过点P垂直于BC的直线折叠,再绕点P逆时针旋转60°.
7.解:(1)由函数图象知,当1<x<2时,△BPQ的面积始终等于10
∴当1<x<2时,△BPQ的面积不变;
故答案为:不变;
(2)设线段OM的函数表达式为y=kx,
把(1,10)代入得k=10,
∴线段OM的函数表达式为y=10x(0≤x≤1);
观察图象可知,当x=1时,点P运动到点C,速度为5cm/s,当x=2时,点P运动到点D,此时点Q开始运动,
作CH⊥AB于H,PK⊥AB交BA的延长线于K.
由题意:×5×CH=10,
∴CH=4,
∴sinB==,
∵AD∥BC,
∴∠PAK=∠B,
∴sinB=sin∠PAK,
∴PK=PAsin∠PAK=(15﹣5x)×=4(3﹣x),
∴曲线NK所对应的函数表达式:y=[5﹣5(x﹣2)]4(3﹣x)=10x2﹣60x+90.
(3)把y=5代入y=10x得x=,
把y=5代入y=10x2﹣60x+90.
得5=10x2﹣60x+90.,
∴x=3±,
∵3+>3,
∴x=3﹣,
∴当x=或3﹣时,△BPQ的面积是5cm2.
8.解:(1)解方程x2﹣12x+32=0得,x1=8,x2=4,∵OA>OC,
∴OA=8,OC=4;
(2)∵四边形ABCO是矩形,
∴AB=OC,∠ABC=∠AOC=90°,
∵把矩形OABC沿对角线AC所在直线折叠,点B落在点D处,
∴AD=AB,∠ADE=∠ABC=90°,
∴AD=OC,∠ADE=∠COE,
在△ADE与△COE中,,
∴△ADE≌△COE;
∵CE2=OE2+OC2,即(8﹣OE)2=OE2+42,
∴OE=3;
(3)过D作DM⊥x轴于M,
则OE∥DM,
∴△OCE∽△MCD,
∴,
∴CM=,DM=,
∴OM=,
∴D(﹣,);
(4)存在;∵OE=3,OC=4,
∴CE=5,
过P1作P1H⊥AO于H,
∵四边形P1ECF1是菱形,
∴P1E=CE=5,P1E∥AC,
∴∠P1EH=∠OAC,
∴==,
∴设P1H=k,HE=2k,
∴P1E=k=5,
∴P1H=,HE=2,
∴OH=2+3,
∴P1(﹣,2+3),
同理P3(,3﹣2),
当A与F重合时,四边形F2ECP2是菱形,
∴EF2∥CP2,EF2,=CP2=5,
∴P2(4,5);
当CE是菱形EP4CF4的对角线时,四边形EP4CF4是菱形,
∴EP4=5,EP4∥AC,
如图2,过P4作P4G⊥x轴于G,过P4作P4N⊥OE于N,
则P4N=OG,P4G=ON,
EP4∥AC,
∴=,
设P4N=x,EN=2x,
∴P4E=CP4=x,
∴P4G=ON=3﹣2x,CG=4﹣x,
∴(3﹣2x)2+(4﹣x)2=(x)2,
∴x=,
∴3﹣2x=,
∴P4(,),
综上所述:存在以点E,C,P,F为顶点的四边形是菱形,P(﹣,2+3),(,3﹣2),(4,5),(,).
9.(1)证明:如图①,延长MF,交边BC的延长线于点H,
∵四边形ABCD是正方形,FM⊥AD,
∴∠ABE=90°,∠EHF=90°,四边形ABHM为矩形,
∴AM=BH=BE+EH
∵△AEF为等腰直角三角形,
∴AE=AF,∠AEB+∠FEH=90°,
∵∠EFH+∠FEH=90°,
∴∠AEB=∠EFH,
在△ABE与△EHF中,
,
∴△ABE≌△EHF(AAS),
∴AB=EH,
∵AM=BH=BE+EH,
∴AM=BE+AB,即AB+BE=AM;
(2)解:如图②,∵∠AEB+∠FEH=90°,∠AEB+∠EAB=90°,
∴∠FEH=∠EAB,
在△ABE与△EHF中,
,
∴△ABE≌△EHF(AAS),
∴AB=EH=EB+AM;
如图③∠BAE+∠AEB=90°,∠AEB+∠HEF=90°,
∴∠BAE=∠HEF,
在△ABE与△EHF中,
,
∴△ABE≌△EHF(AAS),
∴AB=EH,
∴BE=BH+EH=AM+AB;
(3)解:如图①,∵∠AFM=15°,∠AFE=45°,
∴∠EFM=60°,
∴∠EFH=120°,
在△EFH中,
∵∠FHE=90°,∠EFH=120°,
∴此情况不存在;
如图②,∵∠AFM=15°,∠AFE=45°,
∴∠EFH=60°,
∵△ABE≌△EHF,
∴∠EAB=∠EFH=60°,
∵BE=,
∴AB=BEtan60°=×=3,
∵AB=EB+AM,
∴AM=AB﹣EB=3﹣;
如图③,∵∠AFM=15°,∠AFE=45°,
∴∠EFH=45°﹣15°=30°,
∴∠AEB=30°,
∵BE=,
∴AB=BEtan30°==1,
∵BE=AM+AB,
AM=BE﹣AB=,
故答案为:3﹣或.
10.解:(1)∵AB=AD,CB=CD,
∴点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,
∴AC垂直平分BD,
故答案为:AC垂直平分BD;
(2)四边形FMAN是矩形.理由:
如图2,连接AF,
∵Rt△ABC中,点F为斜边BC的中点,
∴AF=CF=BF,
又∵等腰三角形ABD 和等腰三角形ACE
相关试卷
这是一份2022年九年级中考数学考点训练——几何专题:《圆的综合》(三)及答案,共25页。试卷主要包含了定义等内容,欢迎下载使用。
这是一份2022年九年级中考复习数学高分冲刺训练——几何综合:《四边形综合》(五)及答案,共27页。试卷主要包含了定义等内容,欢迎下载使用。
这是一份2022年九年级中考复习数学高分冲刺训练——几何综合:《四边形综合》(三)及答案,共25页。试卷主要包含了感知,探究问题,综合与实践等内容,欢迎下载使用。