年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    考点13 解直角三角形-2022年中考数学高频考点专题突破(全国通用)(原卷版)

    考点13 解直角三角形-2022年中考数学高频考点专题突破(全国通用)(原卷版)第1页
    考点13 解直角三角形-2022年中考数学高频考点专题突破(全国通用)(原卷版)第2页
    考点13 解直角三角形-2022年中考数学高频考点专题突破(全国通用)(原卷版)第3页
    还剩18页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    考点13 解直角三角形-2022年中考数学高频考点专题突破(全国通用)(原卷版)

    展开

    这是一份考点13 解直角三角形-2022年中考数学高频考点专题突破(全国通用)(原卷版),共21页。试卷主要包含了直角三角形,勾股定理及逆定理,科学选择解直角三角形的方法口诀,方向角,解直角三角形实际应用的一般步骤等内容,欢迎下载使用。
    考点13. 解直角三角形
    知识框架:


    基础知识点:
    知识点1-1直角三角形与勾股定理
    1.直角三角形
    定义:有一个角是直角的三角形叫做直角三角形.
    性质:(1)直角三角形两锐角互余;
    (2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;
    (3)在直角三角形中,斜边上的中线等于斜边的一半.
    判定:(1)两个内角互余的三角形是直角三角形;
    (2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.
    2.勾股定理及逆定理
    (1)勾股定理:直角三角形的两条直角边a、b的平方和等于斜边c的平方,即:a2+b2=c2.
    (2)勾股定理的逆定理:如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形.
    知识点1-2锐角三角函数的定义
    在Rt△ABC中,∠C=90°,AB=c,BC=a,AC=b,
    正弦:sinA=;余弦:cosA=;正切:tanA=.
    根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.
    知识点1-3特殊角的三角函数值
    α
    sinα
    cosα
    tanα
    30°



    45°


    1
    60°



    知识点1-4解直角三角形
    1.在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.
    2.解直角三角形的常用关系:在Rt△ABC中,∠C=90°,则:1)三边关系:a2+b2=c2; 2)两锐角关系:∠A+∠B=90°;3)边与角关系:sinA=cosB=,cosA=sinB=,tanA=; 4)sin2A+cos2A=1.
    3.科学选择解直角三角形的方法口诀:
    已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;
    已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;
    已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.
    知识点1-5解直角三角形的应用
    1).仰角和俯角
    仰角:在视线与水平线所成的角中,视线在水平线上方的角叫做仰角.
    俯角:在视线与水平线所成的角中,视线在水平线下方的角叫做俯角.
    2).坡度和坡角
    坡度:坡面的铅直高度h和水平宽度l的比叫做坡面的坡度(或坡比),记作i=.
    坡角:坡面与水平面的夹角叫做坡角,记作α,i=tanα.坡度越大,α角越大,坡面越陡.
    3).方向角(或方位角)
    指北或指南方向线与目标方向线所成的小于90°的水平角叫做方向角.

    4.解直角三角形中“双直角三角形”的基本模型:

    解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解.
    5.解直角三角形实际应用的一般步骤
    1)弄清题中名词、术语,根据题意画出图形,建立数学模型;
    2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;
    3)选择合适的边角关系式,使运算简便、准确;
    4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.

    重难点题型
    考点1.直角三角形的性质
    【解题技巧】在直角三角形中,30°的角所对的直角边等于斜边的一半,这个性质常常用于计算三角形的边长,也是证明一边(30°角所对的直角边)等于另一边(斜边)的一半的重要依据.当题目中已知的条件或结论倾向于该性质时,我们可运用转化思想,将线段或角转化,构造直角三角形,从而将陌生的问题转化为熟悉的问题.
    1.(2020·贵州黔西南布依族苗族自治州·中考真题)如图,在Rt△ABC中,∠C=90°,点D在线段BC上,且∠B=30°,∠ADC=60°,BC=,则BD的长度为________.

    2.(2020·四川乐山市·中考真题)把两个含角的直角三角板按如图所示拼接在一起,点为的中点,连结交于点.则=_________.

    3.(2020·湖南邵阳市·中考真题)如图,在中,,斜边,过点C作,以为边作菱形,若,则的面积为________.

    4.(2020·山东枣庄市·中考真题)如图,平面直角坐标系中,点在第一象限,点在轴的正半轴上,,,将绕点逆时针旋转,点的对应点的坐标是( )

    A. B. C. D.
    5.(2020·山东济宁市·中考真题)如图,在△ABC中点D为△ABC的内心,
    ∠A=60°,CD=2,BD=4.则△DBC的面积是( )
    A.4 B.2 C.2 D.4
    考点2.勾股定理的应用
    【解题技巧】1)应用勾股定理时,要分清直角边和斜边,尤其在记忆a2+b2=c2时,斜边只能是c.若b为斜边,则关系式是a2+c2=b2;若a为斜边,则关系式是b2+c2=a2.
    2)如果已知的两边没有明确边的类型,那么它们可能都是直角边,也可能是一条直角边、一条斜边,求解时必须进行分类讨论,以免漏解.
    1.(2020·山东威海市·中考真题)七巧板是大家熟悉的一种益智玩具,用七巧板能拼出许多有趣的图案.小李将块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②),已知,则图中阴影部分的面积为( )

    第1题 第2题
    A. B. C. D.
    2.(2020·山东东营市·中考真题)如图1,点从的顶点出发,沿匀速运动到点图2是点运动时线段的长度随时间变化的关系图象,其中点为曲线部分的最低点,则的边的长度为( )
    A. B. C. D.
    3.(2020·四川内江市·中考真题)如图,矩形ABCD中,BD为对角线,将矩形ABCD沿BE、BF所在直线折叠,使点A落在BD上的点M处,点C落在BD上的点N处,连结EF.已知,则EF的长为( )

    第3题 第4题 第5题
    A.3 B.5 C. D.
    4.(2020·内蒙古赤峰市·中考真题)如图,Rt△ABC中,∠ACB = 90°,AB = 5,AC= 3,把Rt△ABC沿直线BC向右平移3个单位长度得到△A'B'C' ,则四边形ABC'A'的面积是 ( )
    A.15 B.18 C.20 D.22
    5.(2020·辽宁盘锦市·中考真题)我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是尺.根据题意,可列方程为( )
    A. B. C. D.
    6.(2020·山东烟台市·中考真题)如图,为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OAn的长度为( )
    A.()n B.()n﹣1 C.()n D.()n﹣1

    第6题 第7题 第8题
    7.(2020·山东烟台市·中考真题)如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC边上的点F处.若AB=3,BC=5,则tan∠DAE的值为( )
    A. B. C. D.
    8.(2020·浙江绍兴市·中考真题)如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为_____.

    考点3.求三角函数值
    【解题技巧】(1)分清直角三角形中的斜边与直角边.(2)正确地表示出直角三角形的三边长,常设某条直角边长为k(有时也可设为1),在求三角函数值的过程中约去k.(3)正确应用勾股定理求第三边长.(4)应用锐角三角函数定义,求出三角函数值.
    1.(2020·吉林长春市·中考真题)比萨斜塔是意大利的著名建筑,其示意图如图所示.设塔顶中心点为点,塔身中心线与垂直中心线的夹角为,过点向垂直中心线引垂线,垂足为点.通过测量可得、、的长度,利用测量所得的数据计算的三角函数值,进而可求的大小.下列关系式正确的是( )

    A. B. C. D.
    2.(2020·江苏扬州市·中考真题)如图,由边长为1的小正方形构成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C、D,则的值为( )

    第2题 第3题 第4题
    A. B. C. D.
    3.(2020·浙江杭州市·中考真题)如图,在中,∠C=90°,设∠A,∠B,∠C所对的边分别为a,b,c,则(  )
    A.c=bsinB B.b=csinB C.a=btanB D.b=ctanB
    4.(2020·山东聊城市·中考真题)如图,在的正方形网格中,每个小正方形的边长都是1,的顶点都在这些小正方形的顶点上,那么的值为( ).
    A. B. C. D.
    5.(2020·广西河池市·中考真题)在Rt△ABC中,∠C=90°,BC=5,AC=12,则sinB的值是(  )
    A. B. C. D.
    6.(2020·山东菏泽市·中考真题)如图,在中,,点为边的中点,连接,若,,则的值为______.

    第6题 第7题 第8题
    7.(2020·四川南充市·中考真题)如图,点A,B,C在正方形网格的格点上,则sin∠BAC=( )
    A. B. C. D.
    8.(2020·湖北荆州市·中考真题)如图,在 正方形网格中,每个小正方形的边长都是1,点A,B,C均在网格交点上,⊙O是的外接圆,则的值是( )
    A. B. C. D.
    考点4. 利用特殊角的三角函数值求值
    【解题技巧】锐角三角函数值与三角形三边的长短无关,只与锐角的大小有关.
    1.(2020·四川中考真题)计算:(﹣2)-2﹣|﹣2|+(﹣)0﹣﹣2cos30°.
    2.(2020·贵州黔南布依族苗族自治州·中考真题)计算;

    3.(2020·广西玉林市·中考真题)sin45°的值等于( )
    A.12 B.22 C.32 D.1
    4.(2020·天津中考真题)2sin45°的值等于(   )
    A.1 B. C. D.2
    5.(2020·云南昆明市·中考真题)某款国产手机上有科学计算器,依次按键:,显示的结果在哪两个相邻整数之间(  )

    A.2~3 B.3~4 C.4~5 D.5~6
    6.(2020·山东淄博市·中考真题)已知sinA=0.9816,运用科学计算器求锐角A时(在开机状态下),按下的第一个键是( )
    A. B. C. D.
    7.(2020·辽宁沈阳市·中考真题)计算:


    考点5. 复杂几何图形中的三角函数问题
    1.(2020·贵州黔南布依族苗族自治州·中考真题)如图所示,在四边形中,,,.连接,,若,则长度是_________.

    第1题 第2题 第3题
    2.(2020·江苏常州市·中考真题)如图,点C在线段上,且,分别以、为边在线段的同侧作正方形、,连接、,则_________.
    3.(2020·江苏泰州市·中考真题)如图,点在反比例函数的图像上且横坐标为,过点作两条坐标轴的平行线,与反比例函数的图像相交于点、,则直线与轴所夹锐角的正切值为______.

    4.(2020·山东济南市·中考真题)如图,在矩形纸片ABCD中,AD=10,AB=8,将AB沿AE翻折,使点B落在处,AE为折痕;再将EC沿EF翻折,使点C恰好落在线段EB'上的点处,EF为折痕,连接.若CF=3,则tan=_____.

    第4题 第5题 第6题
    5.(2020·江苏苏州市·中考真题)如图,已知是一个锐角,以点为圆心,任意长为半径画弧,分别交、于点、,再分别以点、为圆心,大于长为半径画弧,两弧交于点,画射线.过点作,交射线于点,过点作,交于点.设,,则________.
    6.(2020·山东潍坊市·中考真题)如图,矩形中,点G,E分别在边上,连接,将和分别沿折叠,使点B,C恰好落在上的同一点,记为点F.若,则_______.
    7.(2020·江苏镇江市·中考真题)如图①,AB=5,射线AM∥BN,点C在射线BN上,将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,点P,Q分别在射线AM、BN上,PQ∥AB.设AP=x,QD=y.若y关于x的函数图象(如图②)经过点E(9,2),则cosB的值等于(  )

    第7题 第8题
    A. B. C. D.
    8.(2020·湖北咸宁市·中考真题)如图,在矩形中,,,E是的中点,将沿直线翻折,点B落在点F处,连结,则的值为( )
    A. B. C. D.

    考点6. 解直角三角形的应用--堤坝(坡角)问题
    【解题技巧】解此类题的一般方法:(1)构造直角三角形;(2)理清直角三角形的边角关系;(3)利用特殊角的三角函数值解答问题.
    1.(2020·辽宁阜新市·中考真题)如图,为了了解山坡上两棵树间的水平距离,数学活动小组的同学们测得该山坡的倾斜角,两树间的坡面距离,则这两棵树的水平距离约为_________m(结果精确到,参考数据:).

    第1题 第2题 第3题
    2.(2020·山东泰安市·中考真题)如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.,斜坡长,斜坡的坡比为12∶5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿至少向右移________时,才能确保山体不滑坡.(取)
    3.(2020·山东济宁市·中考真题)如图,小明在距离地面30米的P处测得A处的俯角为15°,B处的俯角为60°.若斜面坡度为1:,则斜坡AB的长是__________米.
    4.(2020·四川自贡市·中考真题)如图,我市在建高铁的某段路基横断面为梯形,∥,长为6米,坡角为45°,的坡角为30°,则的长为 ________ 米 (结果保留根号)
    5.(2020·湖南益阳市·中考真题)沿江大堤经过改造后的某处横断面为如图所示的梯形,高米,斜坡的坡度,此处大堤的正上方有高压电线穿过,表示高压线上的点与堤面的最近距离(、、在同一直线上),在点处测得.
    (1)求斜坡的坡角
    (2)电力部门要求此处高压线离堤面的安全距离不低于米,请问此次改造是否符合电力部门的安全要求?(参考数据:,,,)



    6.(2020·湖南娄底市·中考真题)如实景图,由华菱涟钢集团捐建的早元街人行天桥于2019年12月18日动工,2020年2月28日竣工,彰显了国企的担当精神,展现了高效的“娄底速度”.该桥的引桥两端各由2个斜面和一个水平面构成,如示意图所示:引桥一侧的桥墩顶端E点距地面,从E点处测得D点俯角为30°,斜面长为,水平面长为,斜面的坡度为1∶4,求处于同一水平面上引桥底部的长.(结果精确到,).


    考点7. 解直角三角形的应用—仰角俯角问题
    1.(2020·湖北鄂州市·中考真题)鄂州市某校数学兴趣小组借助无人机测量一条河流的宽度.如图所示,一架水平飞行的无人机在A处测得正前方河流的左岸C处的俯角为,无人机沿水平线方向继续飞行50米至B处,测得正前方河流右岸D处的俯角为30°.线段的长为无人机距地面的铅直高度,点M、C、D在同一条直线上.其中米.(1)求无人机的飞行高度;(结果保留根号)(2)求河流的宽度.(结果精确到1米,参考数据:)



    2.(2020·湖南邵阳市·中考真题)2019年12月23日,湖南省政府批准,全国“十三五”规划重大水利工程一邵阳资水犬木塘水库,将于2020年开工建设施工测绘中,饮水干渠需经过一座险峻的石山,如图所示,表示需铺设的干渠引水管道,经测量,A,B,C所处位置的海拔分别为,,.若管道与水平线的夹角为30°,管道与水平线夹角为45°,求管道和的总长度(结果保留根号).





    3.(2020·云南昆明市·中考真题)(材料阅读)2020年5月27日,2020珠峰高程测量登山队成功登顶珠穆朗玛峰,将用中国科技“定义”世界新高度.其基本原理之一是三角高程测量法,在山顶上立一个规标,找到2个以上测量点,分段测量山的高度,再进行累加.因为地球面并不是水平的,光线在空气中会发生折射,所以当两个测量点的水平距离大于300m时,还要考虑球气差,球气差计算公式为f=(其中d为两点间的水平距离,R为地球的半径,R取6400000m),即:山的海拔高度=测量点测得山的高度+测量点的海拔高度+球气差.
    (问题解决)某校科技小组的同学参加了一项野外测量某座山的海拔高度活动.如图,点A,B的水平距离d=800m,测量仪AC=1.5m,觇标DE=2m,点E,D,B在垂直于地面的一条直线上,在测量点A处用测量仪测得山项觇标顶端E的仰角为37°,测量点A处的海拔高度为1800m.
    (1)数据6400000用科学记数法表示为   ;
    (2)请你计算该山的海拔高度.(要计算球气差,结果精确到0.01m)
    (参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)







    4.(2020·辽宁盘锦市·中考真题)如图,某数学活动小组要测量建筑物的高度,他们借助测角仪和皮尺进行了实地测量,测量结果如下表.

    测量项目
    测量数据
    测角仪到地面的距离

    点到建筑物的距离

    从处观测建筑物顶部的仰角

    从处观测建筑物底部的俯角

    请根据需要,从上面表格中选择3个测量数据,并利用你选择的数据计算出建筑物的高度.(结果精确到0.1米,参考数据:.)(选择一种方法解答即可)





    5.(2020·辽宁葫芦岛市·中考真题)如图,小明利用学到的数学知识测量大桥主架在水面以上的高度,在观测点处测得大桥主架顶端的仰角为30°,测得大桥主架与水面交汇点的俯角为14°,观测点与大桥主架的水平距离为60米,且垂直于桥面.(点在同一平面内)

    (1)求大桥主架在桥面以上的高度;(结果保留根号)(2)求大桥主架在水面以上的高度.(结果精确到1米)(参考数据)



    6.(2020·江苏镇江市·中考真题)如图,点E与树AB的根部点A、建筑物CD的底部点C在一条直线上,AC=10m.小明站在点E处观测树顶B的仰角为30°,他从点E出发沿EC方向前进6m到点G时,观测树顶B的仰角为45°,此时恰好看不到建筑物CD的顶部D(H、B、D三点在一条直线上).已知小明的眼睛离地面1.6m,求建筑物CD的高度(结果精确到0.1m).(参考数据:≈1.41,≈1.73.)






    考点8. 解直角三角形的应用—方位角问题
    1.(2020·广东深圳市·中考真题)如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为( )
    A.200tan70°米 B.米 C.200sin70°米 D. 米

    2.(2020·湖北省直辖县级行政单位·中考真题)如图,海中有个小岛A,一艘轮船由西向东航行,在点B处测得小岛A位于它的东北方向,此时轮船与小岛相距20海里,继续航行至点D处,测得小岛A在它的北偏西60°方向,此时轮船与小岛的距离为________海里.

    3.(2020·湖北咸宁市·中考真题)如图,海上有一灯塔P,位于小岛A北偏东60°方向上,一艘轮船从北小岛A出发,由西向东航行到达B处,这时测得灯塔P在北偏东30°方向上,如果轮船不改变航向继续向东航行,当轮船到达灯塔P的正南方,此时轮船与灯塔P的距离是________.(结果保留一位小数,)



    4.(2020·四川广元市·中考真题)如图,公路MN为东西走向,在点M北偏东36.5°方向上,距离5千米处是学校A;在点M北偏东45°方向上距离千米处是学校B.(参考数据:,).(1)求学校A,B两点之间的距离(2)要在公路MN旁修建一个体育馆C,使得A,B两所学校到体育馆C的距离之和最短,求这个最短距离.

    5.(2020·黑龙江绥化市·中考真题)如图,热气球位于观测塔P的北偏西50°方向,距离观测塔的A处,它沿正南方向航行一段时间后,到达位于观测塔P的南偏西37°方向的B处,这时,B处距离观测塔P有多远?(结果保留整数,参考数据:,,,,,.)


    6.(2020·湖南岳阳市·中考真题)共抓长江大保护,建设水墨丹青新岳阳,推进市中心城区污水系统综合治理项目,需要从如图,两地向地新建,两条笔直的污水收集管道,现测得地在地北偏东方向上,在地北偏西方向上,的距离为,求新建管道的总长度.(结果精确到,,,,)



    7.(2020·湖北荆门市·中考真题)如图,海岛B在海岛A的北偏东方向,且与海岛A相距20海里,一艘渔船从海岛B出发,以5海里/时的速度沿北偏东方向航行,同时一艘快艇从海岛A出发,向正东方向航行.2小时后,快艇到达C处,此时渔船恰好到达快艇正北方向的E处.(1)求的度数;(2)求快艇的速度及C,E之间的距离.(参考数据:)


    考点9. 解直角三角形的应用—其他问题
    1.(2020·山东济南市·中考真题)如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的央角∠PBE=43°,视线PE与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AFBE,AC⊥BE,FD⊥BE.若A点到B点的距离AB=1.6m,则盲区中DE的长度是( )(参考数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)

    A.2.6m B.2.8m C.3.4m D.4.5m
    2.(2020·湖北荆州市·中考真题)“健康荆州,你我同行”,市民小张积极响应“全民健身动起来”号召,坚持在某环形步道上跑步,已知此步道外形近似于如图所示的,其中,AB与BC间另有步道DE相连,D地在AB的正中位置,E地与C地相距1km,若,小张某天沿路线跑一圈,则他跑了_______km.







    3.(2020·湖北孝感市·中考真题)某型号飞机的机翼形状如图所示,根据图中数据计算的长为______.(结果保留根号)




    4.(2020·湖南株洲市·中考真题)如图所示,点A、B、C对应的刻度分别为0、2、4、将线段CA绕点C按顺时针方向旋转,当点A首次落在矩形BCDE的边BE上时,记为点,则此时线段CA扫过的图形的面积为( )

    第4题 第5题 第6题
    A. B.6 C. D.
    5.(2020·湖南湘西土家族苗族自治州·中考真题)如图,在平面直角坐标系中,矩形的顶点A在x轴的正半轴上,矩形的另一个顶点D在y轴的正半轴上,矩形的边.则点C到x轴的距离等于( )
    A. B. C. D.
    6.(2020·浙江金华市·中考真题)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β,则tanβ的值是______.

    考点10. 三角函数中的新定义问题
    1.(2020·贵州遵义市·中考真题)构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt△ACB中,∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,得∠D=15°,所以tan15°.类比这种方法,计算tan22.5°的值为(  )

    A. B.﹣1 C. D.
    2.(2020·四川广元市·中考真题)规定:给出以下四个结论:(1) ;(2);(3) ;(4)其中正确的结论的个数为( )
    A.1个 B.2个 C.3个 D.4个
    3.(2020·山东日照市·中考真题)阅读理解:
    如图1,Rt△ABC中,a,b,c分别是∠A,∠B,∠C的对边,∠C=90°,其外接圆半径为R.根据锐角三角函数的定义:sinA=,sinB=,可得==c=2R,即:===2R,(规定sin90°=1).

    探究活动:
    如图2,在锐角△ABC中,a,b,c分别是∠A,∠B,∠C的对边,其外接圆半径为R,那么:      (用>、=或<连接),并说明理由.
    事实上,以上结论适用于任意三角形.
    初步应用:在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,∠A=60°,∠B=45°,a=8,求b.
    综合应用:如图3,在某次数学活动中,小凤同学测量一古塔CD的高度,在A处用测角仪测得塔顶C的仰角为15°,又沿古塔的方向前行了100m到达B处,此时A,B,D三点在一条直线上,在B处测得塔顶C的仰角为45°,求古塔CD的高度(结果保留小数点后一位).(≈1.732,sin15°=)




    4.(2021·内蒙古赤峰市·中考模拟)阅读下列材料:
    如图1.在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,可以得到:

    证明:过点A作AD⊥BC,垂足为D.
    在Rt△ABD中,


    同理:


    (1)通过上述材料证明:

    (2)运用(1)中的结论解决问题:
    如图2,在中,,求AC的长度.

    (3)如图3,为了开发公路旁的城市荒地,测量人员选择A、B、C三个测量点,在B点测得A在北偏东75°方向上,沿笔直公路向正东方向行驶18km到达C点,测得A在北偏西45°方向上,根据以上信息,求A、B、C三点围成的三角形的面积.(本题参考数值:sin15°≈0.3,sin120°≈0.9,≈1.4,结果取整数)




    5.(2021·内蒙古赤峰市·中考模拟)如图,在中,设的对边分别为,过点作,垂足为,会有,则

    ,即
    同理,
    通过推理还可以得到另一个表达三角形边角关系的定理—余弦定理:

    在中,若的对边分别为,则



    用上面的三角形面积公式和余弦定理解决问题:
    (1)如图,在中,,的对边分别是3和8.

    求和.
    解:_______________;
    ______________.
    (2)在中,已知,分别是以为边长的等边三角形,设的面积分别为,求证:.


    6.(2020·山东济宁市·九年级期末)(阅读材料)某校九年级数学课外兴趣探究小组在学习完《第二十八章锐角三角函数》后,利用所学知识进行深度探究,得到以下正确的等量关系式:


    ,,
    (理解应用)请你利用以上信息求下列各式的值:(1);(2)
    (拓展应用)(3)为了求出海岛上的山峰的高度,在处和处树立标杆和,标杆的高都是3丈,两处相隔1000步(1步等于6尺),并且和在同一平面内,在标杆的顶端处测得山峰顶端的仰角75°,在标杆的顶端处测得山峰顶端的仰角30°,山峰的高度即的长是多少步?(结果保留整数)(参考数据:)





    7.(2021·全国九年级课时练习)阅读下列材料:
    题目:如图1,在中,已知,,,请用、表示.
    解:如图2,作边上的中线,于,
    则,,,
    在中,
    根据以上阅读,请解决下列问题:
    (1)如图3,在中,,,,求,的值
    (2)上面阅读材料中,题目条件不变,请用或表示.

    8.(2020·四川凉山彝族自治州·中考真题)如图,的半径为R,其内接锐角三角形ABC中,、、所对的边分别是a、b、c

    (1)求证:
    (2)若,,,利用(1)的结论求AB的长和的值

    相关试卷

    考点17 统计-2022年中考数学高频考点专题突破(全国通用)(原卷版):

    这是一份考点17 统计-2022年中考数学高频考点专题突破(全国通用)(原卷版),共19页。试卷主要包含了全面调查,调查的选取,抽样调查样本的选取,频数分布直方图等内容,欢迎下载使用。

    考点18 概率-2022年中考数学高频考点专题突破(全国通用)(原卷版):

    这是一份考点18 概率-2022年中考数学高频考点专题突破(全国通用)(原卷版),共23页。试卷主要包含了必然事件,不可能事件,随机事件等内容,欢迎下载使用。

    考点13 解直角三角形-2022年中考数学高频考点专题突破(全国通用)(解析版):

    这是一份考点13 解直角三角形-2022年中考数学高频考点专题突破(全国通用)(解析版),共63页。试卷主要包含了直角三角形,勾股定理及逆定理,科学选择解直角三角形的方法口诀,方向角,解直角三角形实际应用的一般步骤等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map