- 专题3.3 图形的旋转(知识讲解)-2021-2022学年八年级数学下册基础知识专项讲练(北师大版)学案 学案 0 次下载
- 专题3.4 图形的旋转(专项练习)-2021-2022学年八年级数学下册基础知识专项讲练(北师大版) 试卷 0 次下载
- 专题3.6 中心对称(专项练习)-2021-2022学年八年级数学下册基础知识专项讲练(北师大版) 试卷 0 次下载
- 专题3.7 简单图案设计(专项练习)-2021-2022学年八年级数学下册基础知识专项讲练(北师大版) 试卷 0 次下载
- 专题3.8 《图形的平移和旋转》全章复习与巩固(知识讲解)-2021-2022学年八年级数学下册基础知识专项讲练(北师大版)学案 学案 0 次下载
专题3.5 中心对称(知识讲解)-2021-2022学年八年级数学下册基础知识专项讲练(北师大版)学案
展开专题3.5 中心对称(知识讲解)
【知识回顾】
1、轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,称这两个图形为轴对称,这条直线叫做对称轴,两个图形中对应的点叫做对称点;
2、轴对称图形:把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴,对称轴是对称点连线的垂直平分线;
3、旋转角:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.
【学习目标】
1、理解中心对称和中心对称图形的定义和性质,掌握他们之间的区别和联系;
2、掌握关于原点对称的点的坐标特征,以及如何求对称点的坐标;
3、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.
【要点梳理】
要点一、中心对称和中心对称图形
1.中心对称: 把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.
这两个图形中的对应点叫做关于中心的对称点.
要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;
(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .
2.中心对称图形: 把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
要点诠释:(1)中心对称图形指的是一个图形;
(2)线段,平行四边形,圆等等都是中心对称图形.
3.中心对称与中心对称图形的区别与联系:
| 中心对称 | 中心对称图形 |
区别 | ①指两个全等图形之间的相互位置关系. | ①指一个图形本身成中心对称. |
联系 | 如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形. | 如果把中心对称图形对称的部分看成是两个图形,那么它们又关于中心对称. |
要点二、关于原点对称的点的坐标特征
关于原点对称的两个点的横、纵坐标均互为相反数.即点关于原点的对称点坐标为,反之也成立.
要点三、中心对称、轴对称、旋转对称
1.中心对称图形与旋转对称图形的比较:
2.中心对称图形与轴对称图形比较:
要点诠释:中心对称图形是特殊的旋转对称图形;掌握三种图形的不同点和共同点是灵活运用的前提.
【典型例题】
类型一、中心对称和中心对称图形
1.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,的顶点均在格点上,坐标分别为,,.
(1)画出关于x轴对称的;
(2)画出将绕原点O逆时针旋转90°所得的;
(3)与成中心对称图形吗?若成中心对称图形,直接写出对称中心的坐标.
解:(1)的位置如图所示:
(2)的位置如图所示:
(3)由图象可知,与成中心对称图形,对称中心为.
【总结升华】中心对称的关键是:旋转180°之后可以与原来的图形重合.本题考查了轴对称作图与旋转对称作图,以及中心对称图形的判定,能够准确作出图形,分析坐标变化是解决本题的关键.
举一反三
【变式】下列图形是中心对称图形吗?如果是中心对称图形,在图中用点O标出对称中心.
【答案】图形1,图形3,图形4,图形5,图形8为中心对称图形,其对称中心为图形中的点O.
【分析】根据中心对称图形的定义,抓住所给图案的特征,可找出图中的中心对称图形,再标出它们的对称中心.
解:这些图形中:图形1,图形3,图形4,图形5,图形8为中心对称图形,其对称中心为图形中的点O.
【点拨】本题比较容易,考查识别图形的中心对称性.要注意正确区分轴对称图形和中心对称图形,中心对称是要寻找对称中心,旋转180度后重合.
类型二、作图
2. 已知:如图甲,试用一条直线把图形分成面积相等的两部分(至少三种方法).
【答案与解析】
【总结升华】解决这类问题时,关键是将图形转化成两个中心对称图形(如果原图形本身就是中心对称图形,则直接过对称中心作直线即可),再由两点确定一条直线,过两个对称中心画直线即满足条件.
【变式】如图,有一块长方形钢板,工人师傅想把它分成面积相等的两部分,请你在图中画出作图痕迹.
【分析】先将图形分割成两个矩形或将图形补充成一个大矩形,再分别找出图中两个矩形各自的对称中心,过两个对称中心做直线即可.
解:解法一:钢板可看成由上下两个矩形构成(如图所示),矩形是中心对称图形,过对称中心的任一直线把矩形分成全等的两部分,自然平分其面积,而矩形的对称中心是两条对角线的交点,因此,先作出两矩形的对称中心,过两个对称中心做直线即可.
图一 图二 图三
解法二:该钢板同样可看成左右两矩形构成(如图所示),作出两矩形对称中心,过两个对称中心做直线即可.
解法三:将钢板补成一个完整矩形(如图所示),作出大矩形对称中心和补上一块矩形的对称中心,过两个对称中心做直线即可
【总结升华】此题考查了作图-应用与设计作图,关键是利用矩形的中心对称性把矩形的面积平分,此题难度不大,画图时要注意将图形分割成两个矩形或补充成一个大矩形.
类型三、利用图形变换的性质进行计算或证明
3.已知:如图,三角形ABM与三角形ACM关于直线AF成轴对称,三角形ABE与三角形DCE关于点E成中心对称,点E、D、M都在线段AF上,BM的延长线交CF于点P.
(1)求证:AC=CD;
(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.
【答案】见解析
【分析】(1)利用中心对称图形的性质以及轴对称图形的性质得出全等三角形进而得出对应线段相等;(2)利用(1)中所求,进而得出对应角相等,进而得出答案.
(1)证明:∵△ABM与△ACM关于直线AF成轴对称,
∴△ABM≌△ACM,
∴AB=AC,
又∵△ABE与△DCE关于点E成中心对称,
∴△ABE≌△DCE,
∴AB=CD,
∴AC=CD;
(2)∠F=∠MCD.
理由:由(1)可得∠BAE=∠CAE=∠CDE,∠CMA=∠BMA,
∵∠BAC=2∠MPC,∠BMA=∠PMF,
∴设∠MPC=α,则∠BAE=∠CAE=∠CDE=α,
设∠BMA=β,则∠PMF=∠CMA=β,
∴∠F=∠CPM−∠PMF=α−β,
∠MCD=∠CDE−∠DMC=α−β,
∴∠F=∠MCD.
【解题思路】本题主要考查轴对称、中心对称性质和全等三角形的判定及性质.通过轴对称与中心对称的性质得出全等三角形的判定条件是解题的关键.
举一反三
【变式】有一腰长为cm,底边长为2cm的等腰三角形纸片,如下图,小明沿着底边上的中线将纸片剪开,得到两个全等的直角三角形纸片.请用这两个直角三角形纸片拼一个成中心对称的四边形,画出所有可能的示意图(标注好各边长),并在图形下方直接写出该四边形的周长.
【答案】见解析,该四边形的周长分别为:
解: 腰长为cm,底边长为2cm的等腰三角形,
由三线合一得:底边的一半为
由勾股定理得:底边上的高为:
如图,拼成平行四边形,
此时平行四边形的周长为:
如图,拼成平行四边形如下:
此时平行四边形的周长为:
如图,拼成矩形如下图,
此时矩形的周长为:
【点拨】本题主要考查学生的动手能力及空间想象能力.同时考查等腰三角形的性质及勾股定理的应用,中心对称图形的定义,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.
专题5.9 分式方程(知识讲解)-2021-2022学年八年级数学下册基础知识专项讲练(北师大版)学案: 这是一份专题5.9 分式方程(知识讲解)-2021-2022学年八年级数学下册基础知识专项讲练(北师大版)学案,共8页。学案主要包含了学习目标,要点梳理,典型例题等内容,欢迎下载使用。
专题5.1 认识分式(知识讲解)-2021-2022学年八年级数学下册基础知识专项讲练(北师大版)学案: 这是一份专题5.1 认识分式(知识讲解)-2021-2022学年八年级数学下册基础知识专项讲练(北师大版)学案,共12页。学案主要包含了学习目标,要点整理,例题讲解等内容,欢迎下载使用。
专题3.3 图形的旋转(知识讲解)-2021-2022学年八年级数学下册基础知识专项讲练(北师大版)学案: 这是一份专题3.3 图形的旋转(知识讲解)-2021-2022学年八年级数学下册基础知识专项讲练(北师大版)学案,共9页。学案主要包含了【知识回顾】角的动态定义,【学习目标】,旋转的作图等内容,欢迎下载使用。