终身会员
搜索
    上传资料 赚现金

    专题4.11 《因式分解》全章复习与巩固(知识讲解)-2021-2022学年八年级数学下册基础知识专项讲练(北师大版)学案

    立即下载
    加入资料篮
    专题4.11 《因式分解》全章复习与巩固(知识讲解)-2021-2022学年八年级数学下册基础知识专项讲练(北师大版)学案第1页
    专题4.11 《因式分解》全章复习与巩固(知识讲解)-2021-2022学年八年级数学下册基础知识专项讲练(北师大版)学案第2页
    专题4.11 《因式分解》全章复习与巩固(知识讲解)-2021-2022学年八年级数学下册基础知识专项讲练(北师大版)学案第3页
    还剩7页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题4.11 《因式分解》全章复习与巩固(知识讲解)-2021-2022学年八年级数学下册基础知识专项讲练(北师大版)学案

    展开

    这是一份专题4.11 《因式分解》全章复习与巩固(知识讲解)-2021-2022学年八年级数学下册基础知识专项讲练(北师大版)学案,共10页。学案主要包含了学习目标,要点梳理,典型例题等内容,欢迎下载使用。
    专题4.11 《因式分解》全章复习与巩固(知识讲解)【学习目标】 理解因式分解概念,并感受分解因式与整式乘法是相反方向的运算; 掌握提取公因式法、公式法、十字相乘法、分组分解法等四种基本方法,并能进行因式分解; 了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解. 【要点梳理】把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.特别说明:落实好方法的综合运用: 首先提取公因式,然后考虑用公式;两项平方或立方,三项完全或十字;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,直到每一项不能再分解为止。【典型例题】类型提取公因式1.(2020·上海市梅陇中学七年级期中)【答案】【分析】先提公因式2m+n),再化简计算即可解答.【详解】解:原式=2m+n[4(m+n)mn]=2(m+n)(4m+4nm+n)=2(m+n)(3m+5n)点拨】本题考查因式分解、合并同类项,熟练掌握用提公因式法分解因式的方法,找到公因式是解答的关键.举一反三:【变式】2020·耒阳市冠湘中学八年级月考)分解因式:【答案】【分析】原式先变形为,再利用提公因式法分解.解:原式===点拨】本题考查了多项式的因式分解,属于基础题目,熟练掌握分解因式的方法是解题的关键.类型公式法2.(2019·山西九年级专题练习)分解因式:【答案】【分析】直接利用平方差公式分解因式得出答案. 点拨】本题考查了平方差公式、整式运算的知识;求解的关键是熟练掌握平方差公式进行分解因式,即可得到答案. 举一反三:【变式】2020·北京西城区·北师大实验中学八年级期中)因式分解;【答案】【分析】利用平方差公式进行因式分解后,再进行化简即可. :原式===点拨】本题考查了利用平方差公式进行因式分解,熟练掌握因式分解的方法是解本题的基础,注意检查分解要彻底.32020·上海市静安区实验中学七年级课时练习)【答案】【分析】先提公因式4,将(x+y)看成一个整体,利用完全平方公式分解因式即可. 解:原式点拨】本题考查了提公因式法和完全平方公式法分解因式,解答的关键是掌握完全平方公式的结构特征,公式中的ab可以表示数、字母,也可以是整式.举一反三:【变式】2020·辽宁沈阳市·八年级期末)分解因式:13x12x3       24m22mnn2【答案】1;(2【分析】1)先提取公因式,再利用平方差公式进行因式分解即可;2)先提取公因式,再利用完全平方公式进行因式分解即可.解:1)原式2)原式点拨】本题考查了利用提取公因式法和公式法进行因式分解,因式分解的主要方法包括:提取公因式法、公式法、十字相乘法、分组分解法等,熟练掌握因式分解的方法是解题关键.  类型十字相乘法4.(2020·上海市静安区实验中学七年级课时练习)因式分解:【答案】【分析】将(x-y)当做一个整体,发现-50=-5×10-5+10=5,因此利用十字相乘法进行分解即可.解:=点拨】本题考查了利用十字相乘法进行因式分解,对二次三项式进行因式分解时,若无法使用公式法和提取公因式法因式分解,则考虑使用十字相乘法分解.本题中注意整体思想的运用.举一反三:【变式】 2020·上海市静安区实验中学七年级课时练习)【答案】【分析】先提公因式3mn,再利用十字相乘法分解因式即可. 解:原式点拨】本题考查因式分解,熟练掌握提公因式法和十字相乘法分解因式是解答的关键.类型分组分解法5.(2020·上海松江区·七年级期末)因式分解:【答案】【分析】原式第一、三项结合,二、四项结合,提取公因式后再提取公因式,利用平方差公式分解即可.解:原式====点拨】本题考查了因式分解:分组分解法:对于多于三项以上的多项式的因式分解,先进行适当分组,再把每组因式分解,然后利用提公因式法或公式法进行分解.举一反三:【变式】2019·上海奉贤区·七年级期末)分解因式:【答案】【分析】先分组,再利用提公因式法分解因式.解:===点拨】此题考查分解因式:分组分解法、提公因式法、公式法(平方差公式、完全平方公式)、因式分解法,根据每个多项式的特点选用适合的分解方法是解题的关键.6.(2020·信阳市商城思源实验学校八年级月考)分解因式 x2-y2-z2-2yz    【答案】 【分析】 3)原式后三项运用完全平方公式分解,最后运用平方差公式进行因式分解即可; 解:     x2-y2-z2-2yz   ===  点拨】此题主要考查了因式分解,熟练掌握因式分解的方法是解答此题的关键.【变式】2020·上海市澧溪中学七年级月考)因式分解:【答案】【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有x的二次项,x的一次项,有常数项.所以要考虑后三项x2-2x+1为一组. 解:x2-y2-2x+1
    =-y2+x2-2x+1),
    =-y2+x-12
    =x+y-1)(x-y-1).点拨】本题考查了分组分解法分解因式,难点是采用两两分组还是三一分组.比如本题有x的二次项,x的一次项,有常数项,所以首要考虑的就是三一分组. 类型综合练习7.(2020·山东东营市·丁庄镇中心初级中学八年级月考)(一)因式分解1   2 (二)用简便方法计算1 2 【答案】(一)(1;(2;(二)(1;(2【分析】(一)(1)根据提取公因式的方法分解即可;2)首先运用平方差公式分解,然后运用完全平方公式继续分解;(二)(1)运用平方差公式解答便可;2)根据平方差公式计算即可.解:(一)(1)原式2)原式(二)(1)原式2)原式点拨】本题考查了用提公因式法和公式法进行因式分解以及平方差公式的应用,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止,熟记公式是解答本题的关键.8.2020·重庆南开中学八年级开学考试)【答案】【分析】运用完全平方公式、平方差公式进行计算. 解:原式点拨】本题考查完全平方公式、平方差公式,灵活变形应用平方差公式是关键.举一反三:【变式】2020·上海市静安区实验中学七年级课时练习)利用分解因式计算:1             2【答案】1;(2【分析】1)利用平方差公式运算;2)先利用平方差公式进行运算,然后再提公因式继续运算即可.【详解】1)原式2)原式点拨】本题考查了因式分解,根据具体数据分析确定因式分解的方法是解题的关键.类型因式分解的应用9.(2020·江西九江市·八年级期末)解答下列问题:一正方形的面积是,则表示该正方形的边长的代数式是               求证:当为正整数时, 能被整除.【答案】1;(2)见解析【分析】1)根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,分解因式即可;2)原式利用平方差公式分解得到结果,即可做出判断.【详解】解:(1该正方形的边长的代数式是故答案为:2)证明:= = 原式能被8整除.点拨】本题考查了因式分解,是分解因式的实际应用,要知道分解所得的因式在实际环境中所表示的意思.同时还考查了用公式法进行因式分解.能用公式法进行因式分解的式子的结构特点需要熟记.举一反三:【变式】 2020·成都市金牛实验中学校七年级月考)若abc的三边.1)化简:|ab+c|+|cab||a+b|2)若abc都是正整数,且a2+b22a8b+170的周长.【答案】1ab;(29【分析】1)根据三角形的三边关系化简即可;2)根据非负数的性质和三角形的三边关系化简即可得到结论. 解:(1∵abc△ABC的三边,∴ab+c0cab0a+b0∴|ab+c|+|cab||a+b|ab+cc+a+babab2∵a2+b22a8b+17=(a22a+1+b28b+16)=(a12+b420∴a1b4∵abc△ABC的三边,∴41c4+1∴3c5abc都是正整数,∴c4∴△ABC的周长=1+4+49点拨】本题考查了配方法的应用,非负数的性质,三角形的三边关系,正确的理解题意是解题的关键

    相关学案

    专题6.9 《平行四边形》全章复习与巩固(知识讲解)-2021-2022学年八年级数学下册基础知识专项讲练(北师大版)学案:

    这是一份专题6.9 《平行四边形》全章复习与巩固(知识讲解)-2021-2022学年八年级数学下册基础知识专项讲练(北师大版)学案,共22页。学案主要包含了学习目标,要点梳理,典型例题,答案与解析,总结升华等内容,欢迎下载使用。

    专题5.11 《分式与分式方程》全章复习与巩固(知识讲解)-2021-2022学年八年级数学下册基础知识专项讲练(北师大版)学案:

    这是一份专题5.11 《分式与分式方程》全章复习与巩固(知识讲解)-2021-2022学年八年级数学下册基础知识专项讲练(北师大版)学案,共7页。学案主要包含了学习目标,知识网络,要点梳理,典型例题等内容,欢迎下载使用。

    专题3.8 《图形的平移和旋转》全章复习与巩固(知识讲解)-2021-2022学年八年级数学下册基础知识专项讲练(北师大版)学案:

    这是一份专题3.8 《图形的平移和旋转》全章复习与巩固(知识讲解)-2021-2022学年八年级数学下册基础知识专项讲练(北师大版)学案,共9页。学案主要包含了学习目标,要点梳理,典型例题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map