资料中包含下列文件,点击文件名可预览资料内容
还剩5页未读,
继续阅读
所属成套资源:2022年秋季(人教A版2019)高二上课时训练+精品讲义
成套系列资料,整套一键下载
- 专题12 圆锥曲线之离心率、中点弦问题(课时训练)-2022年秋季高二上精品讲义(新教材人教A版) 试卷 1 次下载
- 专题12 圆锥曲线之离心率、中点弦问题(重难点突破)-【教育机构专用】2022年秋季高二上精品讲义(新教材人教A版) 其他 1 次下载
- 专题13 圆锥曲线中的范围、最值问题(课时训练)-2022年秋季高二上精品讲义(新教材人教A版) 试卷 1 次下载
- 专题13 圆锥曲线中的范围、最值问题(重难点突破)-【教育机构专用】2022年秋季高二上精品讲义(新教材人教A版) 其他 1 次下载
- 专题14 圆锥曲线中的定值、定点、探索性问题(重难点突破)-【教育机构专用】2022年秋季高二上精品讲义(新教材人教A版) 其他 1 次下载
专题14 圆锥曲线中的定值、定点、探索性问题(课时训练)-2022年秋季高二上精品讲义(新教材人教A版)
展开这是一份专题14 圆锥曲线中的定值、定点、探索性问题(课时训练)-2022年秋季高二上精品讲义(新教材人教A版),文件包含专题14圆锥曲线中的定值定点探索性问题课时训练原卷版docx、专题14圆锥曲线中的定值定点探索性问题课时训练解析版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
,所以直线的斜率存在,否则,OA,OB直线的倾斜角之和为从而设AB方程为,显然,
将与联立消去,得
由韦达定理知①
由,得1===
将①式代入上式整理化简可得:,所以,
此时,直线的方程可表示为即
所以直线恒过定点.
所以直线PQ过定点(1,0)
2、已知抛物线的顶点为原点,其焦点到直线:的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.
(Ⅰ) 求抛物线的方程;
(Ⅱ) 当点为直线上的定点时,求直线的方程;
(Ⅲ) 当点在直线上移动时,求的最小值.
联立方程,消去整理得
由一元二次方程根与系数的关系可得,
所以
又点在直线上,所以,
所以
所以当时, 取得最小值,且最小值为.
3、已知椭圆系方程: (, ), 是椭圆的焦点, 是椭圆上一点,且.
(1)求的方程;
(2)为椭圆上任意一点,过且与椭圆相切的直线与椭圆交于, 两点,点关于原点的对称点为,求证: 的面积为定值,并求出这个定值.
【解析】(1)由题意得椭圆的方程为: ,即 .
∵ .∴,又为椭圆上一点,∴.
,即,又,,
∴椭圆的方程为 .
(2)解:①当直线斜率存在时,设方程为,
由消去y整理得,
∵直线与椭圆相切,∴,整理得.
设,则,且,∴点到直线的距离,
同理由消去y整理得,
设,则,
,
.
②当直线斜率不存在时,易知
综上可得的面积为定值.
4、椭圆的左、右焦点分别是,离心率为,过且垂直于轴的直
线被椭圆截得的线段长为l.
(Ⅰ)求椭圆的方程;
(Ⅱ)点是椭圆上除长轴端点外的任一点,连接.设的角平分线交的长轴于点,求的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点作斜率为的直线,使得与椭圆有且只有一个公共点.设直线
的斜率分别为,若,试证明为定值,并求出这个定值.
【解析】:(Ⅰ)由于,将代入椭圆方程得
由题意知,即,又
所以,,所以椭圆方程为
(Ⅱ)由题意可知:=,=,设其中,将向量坐标代入并化简得:,因为,
所以,而,所以
(Ⅲ)由题意可知,l为椭圆的在p点处的切线,由导数法可求得,切线方程为:
,所以,而,代入中得
为定值.
5.已知曲线C:y=,D为直线y=上的动点,过D作C的两条切线,切点分别为A,B.
(1)证明:直线AB过定点:
(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.
【答案】(1)见详解;(2)3或.
【解析】(1)设,则.
由于,所以切线DA的斜率为,故 .
整理得
设,同理可得.
故直线AB的方程为.
所以直线AB过定点.
(2)由(1)得直线AB的方程为.
由,可得.
于是,
.
设分别为点D,E到直线AB的距离,则.
因此,四边形ADBE的面积.
设M为线段AB的中点,则.
由于,而,与向量平行,所以.解得t=0或.
当=0时,S=3;当时,.
因此,四边形ADBE的面积为3或.
【名师点睛】此题第一问是圆锥曲线中的定点问题,第二问是求面积类型,属于常规题型,按部就班地求解就可以,思路较为清晰,但计算量不小.
6.设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.
(1)求椭圆的方程;
(2)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率.
【答案】(1);(2)或.
解析】(1)设椭圆的半焦距为,依题意,,又,可得,.
所以,椭圆的方程为.
(2)由题意,设.设直线的斜率为,
又,则直线的方程为,
与椭圆方程联立整理得,
可得,代入得,进而直线的斜率.
在中,令,得.由题意得,所以直线的斜率为.
由,得,化简得,从而.
所以,直线的斜率为或.
7.已知椭圆: 的离心率,若椭圆的左、右焦点分别为,,椭圆上一动点和,组成的面积最大为.
(1)求椭圆的方程;
(2)若存在直线和椭圆相交于不同的两点,,且原点与,连线的斜率之和满足:=2,求直线的斜率的取值范围.
【答案】:(1) (2)
【解析】:(1)由题可知的面积最大为.
椭圆的方程
(2)设,将代入得:
,由韦达定理得,
又由判别式得 = 1 \* GB3 ①
= 2 \* GB3 ②
联立 = 1 \* GB3 ① = 2 \* GB3 ②有:,解得:
.8、已知点是直线与椭圆的一个公共点, 分别为该椭圆的左右焦点,设取得最小值时椭圆为.
(1)求椭圆的标准方程及离心率;
(2)已知为椭圆上关于轴对称的两点, 是椭圆上异于的任意一点,直线分别与轴交于点,试判断是否为定值;如果为定值,求出该定值;如果不是,请说明理由.
【答案】(1) ;(2) .
【思路引导】
(1)联立,得,由此利用韦达定理、椭圆定义,结合已知条件能求出椭圆的方程;(2)设,且,由已知求出,由此能求出为定值.
试题解析:(1)联立,得,
∵直线与椭圆有公共点,∴,解得,∴,
又由椭圆定义知,
故当时, 取得最小值,
此时椭圆的方程为;离心率为 。
相关试卷
专题16 圆锥曲线中的定值、定点、探索性问题(重难点突破)-2023-2024学年高二数学上学期精品讲义(人教A版):
这是一份专题16 圆锥曲线中的定值、定点、探索性问题(重难点突破)-2023-2024学年高二数学上学期精品讲义(人教A版),文件包含专题16圆锥曲线中的定值定点探索性问题重难点突破原卷版-高二数学上学期精品讲义人教A版docx、专题16圆锥曲线中的定值定点探索性问题重难点突破解析版-高二数学上学期精品讲义人教A版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
专题16 圆锥曲线中的定值、定点、探索性问题(课时训练)-2023-2024学年高二数学上学期精品讲义(人教A版):
这是一份专题16 圆锥曲线中的定值、定点、探索性问题(课时训练)-2023-2024学年高二数学上学期精品讲义(人教A版),文件包含专题16圆锥曲线中的定值定点探索性问题课时训练原卷版-高二数学上学期精品讲义人教A版docx、专题16圆锥曲线中的定值定点探索性问题课时训练解析版-高二数学上学期精品讲义人教A版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
专题22 圆锥曲线中的定点、定值、定直线问题 微点4 圆锥曲线中的定点、定值、定直线综合训练试题及答案:
这是一份专题22 圆锥曲线中的定点、定值、定直线问题 微点4 圆锥曲线中的定点、定值、定直线综合训练试题及答案,共41页。试卷主要包含了已知椭圆C,已知椭圆,已知双曲线,已知圆M,已知F1在C上等内容,欢迎下载使用。