所属成套资源:2022年新高二年级数学暑假精品课程(人教A版2019)
第十讲 函数的图象-2022年新高二年级数学暑假精品课程(人教A版2019)练习题
展开
这是一份第十讲 函数的图象-2022年新高二年级数学暑假精品课程(人教A版2019)练习题,文件包含第十讲函数的图象解析版doc、第十讲函数的图象原卷版doc等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
第十讲 函数的图象【基础知识】1.利用描点法作函数的图象步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.2.利用图象变换法作函数的图象(1)平移变换(2)对称变换y=f(x)的图象y=-f(x)的图象;y=f(x)的图象y=f(-x)的图象;y=f(x)的图象y=-f(-x)的图象;y=ax(a>0,且a≠1)的图象y=logax(a>0,且a≠1)的图象.(3)伸缩变换y=f(x)y=f(ax).y=f(x)y=Af(x).(4)翻折变换y=f(x)的图象y=|f(x)|的图象;y=f(x)的图象y=f(|x|)的图象.[微点提醒]记住几个重要结论(1)函数y=f(x)与y=f(2a-x)的图象关于直线x=a对称.(2)函数y=f(x)与y=2b-f(2a-x)的图象关于点(a,b)中心对称.(3)若函数y=f(x)对定义域内任意自变量x满足:f(a+x)=f(a-x),则函数y=f(x)的图象关于直线x=a对称. 【考点剖析】考点一 作函数的图象【例1】 作出下列函数的图象:(1)y=; (2)y=|log2(x+1)|; (3)y=x2-2|x|-1.【解析】 (1)先作出y=的图象,保留y=图象中x≥0的部分,再作出y=的图象中x>0部分关于y轴的对称部分,即得y=的图象,如图①实线部分. (2)将函数y=log2x的图象向左平移一个单位,再将x轴下方的部分沿x轴翻折上去,即可得到函数y=|log2(x+1)|的图象,如图②.(3)∵y=且函数为偶函数,先用描点法作出[0,+∞)上的图象,再根据对称性作出(-∞,0)上的图象,得图象如图③.规律方法 作函数图象的一般方法(1)直接法.当函数解析式(或变形后的解析式)是熟悉的基本函数时,就可根据这些函数的特征描出图象的关键点直接作出.(2)图象变换法.若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.考点二 函数图象的辨识【例2】 (1)(一题多解)函数y=1+x+的部分图象大致为( )(2)函数y=2x2-e|x|在[-2,2]的图象大致为( )【解析】 (1)法一 易知g(x)=x+为奇函数,故y=1+x+的图象关于点(0,1)对称,排除C;当x∈(0,1)时,y>0,排除A;当x=π时,y=1+π,排除B,选项D满足.法二 当x=1时,f(1)=1+1+sin 1=2+sin 1>2,排除A,C;又当x→+∞时,y→+∞,排除B,而D满足.(2)f(x)=2x2-e|x|,x∈[-2,2]是偶函数,又f(2)=8-e2∈(0,1),排除选项A,B;当x≥0时,f(x)=2x2-ex,f′(x)=4x-ex,所以f′(0)=-1<0,f′(2)=8-e2>0,所以函数f(x)在(0,2)上有解,故函数f(x)在[0,2]上不单调,排除C,故选D.规律方法 1.抓住函数的性质,定性分析:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从周期性,判断图象的循环往复;(4)从函数的奇偶性,判断图象的对称性.2.抓住函数的特征,定量计算:从函数的特征点,利用特征点、特殊值的计算分析解决问题.考点三 函数图象的应用 【例3-1】 已知函数f(x)=x|x|-2x,则下列结论正确的是( )A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(-∞,1)C.f(x)是奇函数,递减区间是(-1,1)D.f(x)是奇函数,递增区间是(-∞,0)【解析】 将函数f(x)=x|x|-2x去掉绝对值得f(x)=画出函数f(x)的图象,如图,观察图象可知,函数f(x)的图象关于原点对称,故函数f(x)为奇函数,且在(-1,1)上是减少的.【例3-2】 已知函数y=f(x)的图象是如图所示的折线ACB,且函数g(x)=log2(x+1)”,则不等式f(x)≥g(x)的解集是( )A.{x|-1<x≤0}B.{x|-1≤x≤1}C.{x|-1<x≤1}D.{x|-1<x≤2}【解析】 令g(x)=y=log2(x+1),作出函数g(x)图象如图,由得∴结合图象知不等式f(x)≥log2(x+1)的解集为{x|-1<x≤1}.【例3-3】已知函数f(x)=其中m>0.若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是________.【解析】 在同一坐标系中,作y=f(x)与y=b的图象.当x>m时,x2-2mx+4m=(x-m)2+4m-m2,∴要使方程f(x)=b有三个不同的根,则有4m-m2<m,即m2-3m>0.又m>0,解得m>3.规律方法 1.利用函数的图象研究函数的性质对于已知或易画出其在给定区间上图象的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零点)常借助于图象研究,但一定要注意性质与图象特征的对应关系.2.利用函数的图象可解决某些方程和不等式的求解问题,方程f(x)=g(x)的根就是函数f(x)与g(x)图象交点的横坐标;不等式f(x)<g(x)的解集是函数f(x)的图象位于g(x)图象下方的点的横坐标的集合,体现了数形结合思想. 【真题演练】1.(2021·浙江高考真题)已知函数,则图象为如图的函数可能是( )A. B.C. D.2.(2021·全国高三其他模拟)函数在上的图象大致为( )A. B. C. D.3.(2021·宁波中学高三其他模拟)函数的图象大致为( )A. B.C. D.4.(2021·陕西咸阳市·高三其他模拟)已知函数,则的大致图象不可能为( )A. B.C. D.5.(2021·全国高考真题(文))已知函数.(1)画出和的图像;(2)若,求a的取值范围. 【过关检测】1.函数(为常数,,为自然对数的底数)的图象可能为( )A. B.C. D.2.匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h关于注水时间t的函数图象大致是( )A. B.C. D.3.已知函数,则其大致图象是下列图中的( )A. B.C. D.4.函数的图象是( )A. B.C. D.5.以下四个选项中的函数,其函数图象最适合如图的是( )A.y= B.y=C.y= D.y=6.已知函数,则下列图象错误的是( )A.的图象:B.的图象:C.的图象:D.的图象:7.函数在上的图象大致为( )A. B.C. D.8.函数的图像大致是( )A. B.C. D.9.函数y=f(x)的图象如图所示,则函数y=f(x)的解析式可能为( )A. B.C. D.10.已知函数.(1)在图中的坐标系中画出的图象;(2)若的最小值为,当正数,满足,证明:.
相关试卷
这是一份第十八讲 空间向量基本定理-2022年新高二年级数学暑假精品课程(人教A版2019)练习题,文件包含第十八讲空间向量基本定理解析版doc、第十八讲空间向量基本定理原卷版doc等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
这是一份第十二讲 导数的概念及运算-2022年新高二年级数学暑假精品课程(人教A版2019)练习题,文件包含第十二讲导数的概念及运算解析版doc、第十二讲导数的概念及运算原卷版doc等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
这是一份第十六讲 空间向量及其线性运算-2022年新高二年级数学暑假精品课程(人教A版2019)练习题,文件包含第十六讲空间向量及其线性运算解析版doc、第十六讲空间向量及其线性运算原卷版doc等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。