第18讲 角度、数量积定值问题-2022年新高考数学之圆锥曲线综合讲义
展开第18讲 角度、数量积定值问题
一、解答题
1.已知椭圆:的上下顶点分别为,且点.分别为椭圆的左、右焦点,且.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)点是椭圆上异于,的任意一点,过点作轴于,为线段
的中点.直线与直线交于点,为线段的中点,为坐标原点.求
的大小.
2.已知椭圆上的点到它的两个焦的距离之和为,以椭圆的短轴为直径的圆经过这两个焦点,点,分别是椭圆的左、右顶点.
()求圆和椭圆的方程.
()已知,分别是椭圆和圆上的动点(,位于轴两侧),且直线与轴平行,直线,分别与轴交于点,.求证:为定值.
3.已知椭圆上的点到两个焦点的距离之和为,短轴长为,直线与椭圆交于、两点。
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线与圆相切,证明:为定值.
4.已知点为椭圆上任意一点,直线与圆交于两点,点为椭圆的左焦点.
(Ⅰ)求椭圆的离心率及左焦点的坐标;
(Ⅱ)求证:直线与椭圆相切;
(Ⅲ)判断是否为定值,并说明理由.
5.已知点F1为椭圆的左焦点,在椭圆上,PF1⊥x轴.
(1)求椭圆的方程:
(2)已知直线l与椭圆交于A,B两点,且坐标原点O到直线l的距离为的大小是否为定值?若是,求出该定值:若不是,请说明理由.
6.如图,点M在椭圆1(0<b)上,且位于第一象限,F1,F2为椭圆的两个焦点,过F1,F2,M的圆与y轴交于点P,Q(P在Q的上方),|OP|•|OQ|=1.
(Ⅰ)求b的值;
(Ⅱ)直线PM与直线x=2交于点N,试问,在x轴上是否存在定点T,使得•为定值?若存在,求出点T的坐标与该定值;若不存在,请说明理由.
7.在平面直角坐标系xOy中,已知椭圆C:的离心率为,且过点,过椭圆的左顶点A作直线轴,点M为直线上的动点,点B为椭圆右顶点,直线BM交椭圆C于P
(1)求椭圆C的方程;
(2)求证:;
(3)试问是否为定值?若是定值,请求出该定值;若不是定值,请说明理由.
8.已知椭圆左右焦点为,左顶点为A(-2.0),上顶点为B,且∠=.
(1)求椭圆C的方程;
(2)探究轴上是否存在一定点P,过点P的任意直线与椭圆交于M、N不同的两点,M、N不与点A重合,使得 为定值,若存在,求出点P;若不存在,说明理由.
9. 已知椭圆C:(a>b>0)经过点(,1),以原点为圆心、椭圆短半轴长为半径的圆经过椭圆的焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点(-1,0)的直线l与椭圆C相交于A,B两点,试问在x轴上是否存在一个定点M,使得恒为定值?若存在,求出该定值及点M的坐标;若不存在,请说明理由.
10.已知椭圆(a>b>0)的一个焦点与抛物线y2=4x的焦点F重合,且椭圆短轴的两个端点与点F构成正三角形.
(1)求椭圆的方程;
(2)若过点(1,0)的直线l与椭圆交于不同的两点P,Q,试问在x轴上是否存在定点E(m,0),使恒为定值?若存在,求出E的坐标,并求出这个定值;若不存在,请说明理由.
11.已知椭圆的离心率为,右焦点为,直线l经过点F,且与椭圆交于A,B两点,O为坐标原点.
(1)求椭圆的标准方程;
(2)当直线l绕点F转动时,试问:在x轴上是否存在定点M,使得为常数?若存在,求出定点M的坐标;若不存在,请说明理由.
12.已知椭圆E的中心在原点,焦点在x轴上,椭圆的左顶点坐标为,离心率为.
求椭圆E的方程;
过点作直线l交E于P、Q两点,试问:在x轴上是否存在一个定点M,使为定值?若存在,求出这个定点M的坐标;若不存在,请说明理由.
13.已知椭圆C:的离心率为,点P(1,)在椭圆C上,直线l过椭圆的右焦点与椭圆相交于A,B两点.
(1)求椭圆C的方程;
(2)在x轴上是否存在定点M,使得为定值?若存在,求定点M的坐标;若不在,请说明理由.
14.已知圆的圆心在轴上,半径,过点且与直线相切.
(1)求圆的方程;
(2)若过点的直线l与圆交于不同的两点,且与直线交于点,若中点为,问是否存在实数,使为定值,若存在,求出的值;若不存在,请说明理由.
2024届高考数学-第18讲 向量的数量积问题(解析版): 这是一份2024届高考数学-第18讲 向量的数量积问题(解析版),共21页。试卷主要包含了已知抛物线过点等内容,欢迎下载使用。
高中数学高考第52讲 圆锥曲线的综合应用-定点、定值问题(讲)(学生版): 这是一份高中数学高考第52讲 圆锥曲线的综合应用-定点、定值问题(讲)(学生版),共5页。试卷主要包含了直线与圆锥曲线的位置关系,弦长公式,定点问题等内容,欢迎下载使用。
高中数学高考第52讲 圆锥曲线的综合应用-定点、定值问题(讲)(教师版): 这是一份高中数学高考第52讲 圆锥曲线的综合应用-定点、定值问题(讲)(教师版),共7页。试卷主要包含了直线与圆锥曲线的位置关系,弦长公式,定点问题等内容,欢迎下载使用。