2022年浙江省杭州市中考数学备考模拟试卷(word版无答案)
展开这是一份2022年浙江省杭州市中考数学备考模拟试卷(word版无答案),共7页。
2022年浙江省杭州市中考数学备考模拟试卷
一 、选择题(本大题有10个小题,每小题3分,共30分。在每小题给出的四个选项中,只有一项是符合题目要求的)
1.在实数|﹣3.14|,﹣3,﹣,π中,最小的数是( )
A.﹣ B.﹣3 C.|﹣3.14| D.π
2.下列运算正确的是( )
A.4m﹣m=4 B.(a2)3 =a5
C.(x+y )2=x2+y2 D.﹣(t﹣1)=1﹣t
3.如图所示,四边形是平行四边形,点在线段的延长线上,若,则( )
A.38° B.48° C.58° D.66°
4.如图,在中,,平分,则的度数为( )
A. B. C. D.
5.如图,已知⊙O是等腰Rt△ABC的外接圆,点D是上一点,BD交AC于点E,若BC=4,AD=,则AE的长是( )
A.3 B.2 C.1 D.1.2
6.已知x﹣y=4,xy=2,那么(x+y)2的值为( )
A.24 B.20 C.12 D.8
7.不等式的解集在数轴上表示为( )
A. B.
C. D.
8.关于x的分式方程3=0有解,则实数m应满足的条件是( )
A.m=﹣2 B.m≠﹣2 C.m=2 D.m≠2
9.如图,在中,,将绕点C逆时针旋转得到,点A,B的对应点分别为D,E,连接.当点A,D,E在同一条直线上时,下列结论一定正确的是( )
A. B. C. D.
10.如图,在和中,,,.连接CD,连接BE并延长交AC,AD于点F,G.若BE恰好平分,则下列结论错误的是( )
A.
二 、填空题(本大题有6个小题,每小题4分,共24分。)
11.若一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的方差为 .
12.已知圆锥形工件的底面直径是40cm,母线长30cm,其侧面展开图圆心角的度数为 .
13.如图,和中,,在不添加任何辅助线的情况下,请你添加一个条件___________,使和全等.
14.如图,在中,,,分别以点A,B为圆心,大于的长为半径作弧,两弧相交于M,N两点,作直线MN交AC于点D,连接BD,则__________.
15.已知,当分别取1,2,3,……,2020时,所对应值的总和是__________.
16.如图,在矩形ABCD中,AD=2.将∠A向内翻折,点A落在BC上,记为A′,折痕为DE.若将∠B沿EA′向内翻折,点B恰好落在DE上,记为B′,则AB= .
三 、解答题(本大题有7个小题,共66分。解答应写出文字说明、证明过程或验算步骤。)
17.(1)计算:
(2)先化简:,然后从0、1、2三个数中选一个你认为合适的数代入求值.
18.雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民,并对调查结果进行了整理,绘制了如下不完整的统计图表,观察分析并回答下列问题.
组别 | 雾霾天气的主要成因 | 百分比 |
A | 工业污染 | 45% |
B | 汽车尾气排放 | |
C | 炉烟气排放 | 15% |
D | 其他(滥砍滥伐等) |
⑴本次被调查的市民共有多少人?
⑵分别补全条形统计图和扇形统计图,并计算图2中区域B所对应的扇形圆心角的度数.
⑶若该市有100万人口,请估计持有
A.B两组主要成因的市民有多少人?
19.如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,与反比例函数y=的图象有唯一的公共点C.
(1)求k的值及C点坐标;
(2)直线l与直线y=﹣2x+4关于x轴对称,且与y轴交于点B',与双曲线y=交于D、E两点,求△CDE的面积.
20.某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.
(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)
(2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?
(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?
21.如图,点A.B、C在半径为8的⊙O上,过点B作BD∥AC,交OA延长线于点D.连接BC,且∠BCA=∠OAC=30°.
(1)求证:BD是⊙O的切线,
(2)求图中阴影部分的面积.
22.【操作发现】在计算器上输入一个正数,不断地按“”键求算术平方根,运算结果越来越接近1或都等于1.
【提出问题】输入一个实数,不断地进行“乘以常数k,再加上常数b”的运算,有什么规律?
【分析问题】我们可用框图表示这种运算过程(如图a).
也可用图象描述:如图1,在x轴上表示出x1,先在直线y=kx+b上确定点(x1,y1),再在直线y=x上确定纵坐标为y1的点(x2,y1),然后再x轴上确定对应的数x2,…,以此类推.
【解决问题】研究输入实数x1时,随着运算次数n的不断增加,运算结果x,怎样变化.
(1)若k=2,b=﹣4,得到什么结论?可以输入特殊的数如3,4,5进行观察研究;
(2)若k>1,又得到什么结论?请说明理由;
(3)①若k=﹣,b=2,已在x轴上表示出x1(如图2所示),请在x轴上表示x2,x3,x4,并写出研究结论;
②若输入实数x1时,运算结果xn互不相等,且越来越接近常数m,直接写出k的取值范围及m的值(用含k,b的代数式表示)
23.已知在Rt△ABC中,∠BAC=90°,AB≥AC,D,E分别为AC,BC边上的点(不包括端点),且==m,连结AE,过点D作DM⊥AE,垂足为点M,延长DM交AB于点F.
(1)如图1,过点E作EH⊥AB于点H,连结DH.
①求证:四边形DHEC是平行四边形;
②若m=,求证:AE=DF;
(2)如图2,若m=,求的值.
相关试卷
这是一份2021年浙江省杭州市江干区中考数学二模试卷(word版无答案),共4页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2021年浙江省杭州市余杭区中考数学三模试卷(word版无答案),共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022年浙江省杭州市名校中考数学模拟试卷(word版含答案),共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。