2022年浙江省温州市中考数学备考模拟试卷(1)(word版无答案)
展开这是一份2022年浙江省温州市中考数学备考模拟试卷(1)(word版无答案),共7页。试卷主要包含了251等内容,欢迎下载使用。
2022年浙江省温州市中考数学备考模拟试卷(1)
一 、选择题(本大题共10小题,每小题4分,共40分。在每小题给出的四个选项中,只有一个选项是符合题目要求的)
1.|-2021|等于( )
A. 2021 B. -2021 C. ±2021 D.
2.下列几何体中,其侧面展开图为扇形的是( )
A. B. C. D.
3.五一期间,某地相关部门对观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整),下列结论错误的是( )
A.本次抽样调查的样本容量是5000
B.扇形统计图中的m为10%
C.若五一期间观光的游客有50万人,则选择自驾方式出行的大约有20万人
D.样本中选择公共交通出行的有2400人
4.+的运算结果正确的是( )
A. B. C. D.a+b
5.函数y=中,自变量x的取值范围是( )
A.x≥1 B.x>1 C.x≥1且x≠2 D.x≠2
6.下列命题正确的是( )
A.矩形对角线互相垂直
B.方程的解为
C.六边形内角和为540°
D.一条斜边和一条直角边分别相等的两个直角三角形全等
7.如图,函数和(是常数,且)在同一平面直角坐标系的图象可能是( )
A. B. C. D.
8.为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只,若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共( )只.
A.55 B.72 C.83 D.89
9.如图,直线l1,l2被直线l3所截,且l1∥l2,过l1上的点A作AB⊥l3交l3于点B,其中∠1<30°,则下列一定正确的是( )
A.∠2>120° B.∠3<60° C.∠4﹣∠3>90° D.2∠3>∠4
10.观察等式:2+22=23﹣2,2+22+23=24﹣2,2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是( )
A.2a2﹣2a B.2a2﹣2a﹣2 C.2a2﹣a D.2a2+a
二 、填空题(本大题共6小题,每小题5分,共30分)
11.分解因式:ab2﹣a= .
12.如图,人字梯,的长都为2米.当时,人字梯顶端高地面的高度是____米(结果精确到.参考依据:,,)
13.如图,在⊙O内接四边形中,若,则________.
14.如图,l∥m,∠1=120°,∠A=55°,则∠ACB的大小是 。
15.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,DE为△ABC的中位线,延长BC至F,使CF=BC,连接FE并延长交AB于点M.若BC=a,则△FMB的周长为 .
16.如图,在菱形ABCD中,AB=2,∠BAD=60°,将菱形ABCD绕点A逆时针方向旋转,对应得到菱形AEFG,点E在AC上,EF与CD交于点P,则DP的长是 .
三 、解答题(本大题共8小题,共80分,解答应写出文字说明、证明过程或验算步骤。)
17.(1)计算:;
(2)解不等式组:
18.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.
| 甲种糖果 | 乙种糖果 | 丙种糖果 |
单价(元/千克) | 15 | 25 | 30 |
千克数 | 40 | 40 | 20 |
(1)求该什锦糖的单价.
(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?
19.如图,在平面直角坐标系中,矩形OABC的边BC交x轴于点D,AD⊥x轴,反比例函数y=(x>0)的图象经过点A,点D的坐标为(3,0),AB=BD.
(1)求反比例函数的解析式,
(2)点P为y轴上一动点,当PA+PB的值最小时,求出点P的坐标.
20.如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC,分别交于M,H.
(1)求证:CF=CH;
(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论.
21.如图,一渔船自西向东追赶鱼群,在A处测得某无名小岛C在北偏东60°方向上,前进2海里到达B点,此时测得无名小岛C在东北方向上.已知无名小岛周围2.5海里内有暗礁,问渔船继续追赶鱼群有无触礁危险?(参考数据:)
22.如图,在平行四边形中,是对角线,,以点为圆心,以的长为半径作,交边于点,交于点,连接.
(1)求证:与相切;
(2)若,,求阴影部分的面积.
23.问题提出
(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.
问题探究
(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.
问题解决
(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.
24.如图,已知抛物线y=x2﹣x﹣n(n>0)与x轴交于A,B两点(A点在B点的左边),与y轴交于点C.
(1)如图1,若△ABC为直角三角形,求n的值;
(2)如图1,在(1)的条件下,点P在抛物线上,点Q在抛物线的对称轴上,若以BC为边,以点B、C、P、Q为顶点的四边形是平行四边形,求P点的坐标;
(3)如图2,过点A作直线BC的平行线交抛物线于另一点D,交y轴于点E,若AE:ED=1:4,求n的值.
相关试卷
这是一份2022年浙江省温州市龙港市中考数学模拟试卷(word版含答案),共8页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2022年浙江省温州市中考数学备考模拟试题(word版含答案),共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2022年浙江省温州市中考备考模拟数学试题(2)(word版含答案),共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。