数学必修 第一册4.5 函数模型及其应用综合训练题
展开
课时跟踪检测(三十四) 几种函数增长快慢的比较
[A级 基础巩固]
1.某学校开展研究性学习活动,某同学获得一组实验数据如下表:
x | 1.99 | 3 | 4 | 5.1 | 6.12 |
y | 1.5 | 4.04 | 7.5 | 12 | 18.01 |
对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是( )
A.y=2x-2 B.y=
C.y=log2x D.y=(x2-1)
解析:选D 法一:相邻的自变量之差从左到右依次大约为1,相邻的函数值之差大约为2.5,3.5,4.5,6,基本上是逐渐增加的,抛物线拟合程度最好,故选D.
法二:可以采用特殊值代入法,取某个x的值代入,再比较函数值是否与表中数据相符.可取x=4,经检验易知选D.
2.有甲、乙、丙、丁四种不同品牌的自驾车,其跑车时间均为x小时,跑过的路程分别满足关系式:f1(x)=x2,f2(x)=4x,f3(x)=log3(x+1),f4(x)=2x-1,则5个小时以后跑在最前面的为( )
A.甲 B.乙
C.丙 D.丁
解析:选D 法一:分别作出四个函数的图象(图略),利用数形结合,知5个小时后丁车在最前面.
法二:由于4个函数均为增函数,且f1(5)=52=25,f2(5)=20,f3(5)=log3(5+1)=1+log32,f4(5)=25-1=31,f4(5)最大,所以5个小时后丁车在最前面,故选D.
3.(2021·安徽省级示范高中高一期中)若x∈(0,1),则下列结论正确的是( )
A.2x>x>lg x B.2x>lg x>x
C.x>2x>lg x D.lg x>x>2x
解析:选A 如图所示,结合y=2x,y=x及y=lg x的图象易知,当x∈(0,1)时,2x>x>lg x,故选A.
4.某校甲、乙两食堂某年1月份的营业额相等,甲食堂的营业额逐月增加,并且每月的增加值相同;乙食堂的营业额也逐月增加,且每月增加的百分率相同.已知本年9月份两食堂的营业额又相等,则本年5月份( )
A.甲食堂的营业额较高
B.乙食堂的营业额较高
C.甲、乙两食堂的营业额相同
D.不能确定甲、乙哪个食堂的营业额较高
解析:选A 设甲、乙两食堂1月份的营业额均为m,甲食堂的营业额每月增加a(a>0),乙食堂的营业额每月增加的百分率为x,由题意可知,m+8a=m×(1+x)8,则5月份甲食堂的营业额y1=m+4a,乙食堂的营业额y2=m×(1+x)4=.
因为y-y=(m+4a)2-m(m+8a)=16a2>0,
所以y1>y2.
故本年5月份甲食堂的营业额较高.
5.某企业的一个车间有8名工人,以往每人年薪为1万元.从今年起,计划每人的年薪比上一年增加10%,另外每年新招3名工人,每名新工人的第一年年薪为8千元,第二年起与老工人的年薪相同.若以今年为第一年,那么第x年企业付给工人的工资总额y(万元)表示成x的函数,其表达式为( )
A.y=(3x+5)1.1x+2.4
B.y=8×1.1x+2.4x
C.y=(3x+8)1.1x+2.4
D.y=(3x+5)1.1x-1+2.4
解析:选A 第一年企业付给工人的工资总额为8×1.1+3×0.8(万元),
第二年企业付给工人的工资总额为(8+3)×1.12+3×0.8(万元),…,
以此类推,第x年企业付给工人的工资总额应为y=[8+3(x-1)]×1.1x+2.4=(3x+5)1.1x+2.4(万元).
6.函数y=x2与函数y=xln x在区间(1,+∞)上增长较快的一个是________.
解析:当x变大时,x比ln x增长要快,
∴x2要比xln x增长的要快.
答案:y=x2
7.一种专门侵占内存的计算机病毒,开机时占据内存2 KB,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,那么开机后经过________分钟,该病毒占据64 MB内存(1 MB=210 KB).
解析:设开机后经过n个3分钟后,该病毒占据64 MB内存,则2×2n=64×210=216,∴n=15,故时间为15×3=45(分).
答案:45
8.生活经验告诉我们,当水注入容器(设单位时间内进水量相同)时,水的高度随着时间的变化而变化,在下图中请选择与容器相匹配的图象,A对应______;B对应_____;C对应______;D对应______.
解析:A容器下粗上细,水高度的变化先慢后快,故与(4)对应;B容器为球形,水高度变化为快—慢—快,应与(1)对应;C,D容器都是柱形的,水高度的变化速度都应是直线型,但C容器细,D容器粗,故水高度的变化为:C容器水高度变化快,与(3)对应,D容器水高度变化慢,与(2)对应.
答案:(4) (1) (3) (2)
9.画出函数f(x)=与函数g(x)=x2-2的图象,并比较两者在[0,+∞)上的大小关系.
解:函数f(x)与g(x)的图象如图所示.
根据图象易得:当0≤x<4时,f(x)>g(x);
当x=4时,f(x)=g(x);
当x>4时,f(x)<g(x).
10.每年的3月12日是植树节,全国各地在这一天都会开展各种形式、各种规模的义务植树活动,某市现有树木面积10万平方米,计划今后5年内扩大树木面积,有两种方案如下:
方案一:每年植树1万平方米;
方案二:每年树木面积比上一年增加9%.
你觉得哪种方案较好.(参考数据:(1+9%)5≈1.538 6)
解:方案一:5年后树木面积是10+1×5=15(万平方米).
方案二:5年后树木面积是10×(1+9%)5≈15.386(万平方米).
∵15.386>15,∴方案二较好.
[B级 综合运用]
11.当0<x<1时,f(x)=x2,g(x)=x,h(x)=x-2的大小关系是( )
A.h(x)<g(x)<f(x) B.h(x)<f(x)<g(x)
C.g(x)<h(x)<f(x) D.f(x)<g(x)<h(x)
解析:选D 在同一坐标下作出函数f(x)=x2,g(x)=x,h(x)=x-2的图象.由图象知,D正确.
12.某地发生地震后,地震专家对该地区发生的余震进行了监测,记录的部分数据如下表:
地震强度(J) | 1.6×1019 | 3.2×1019 | 4.5×1019 | 6.4×1019 |
震级(里氏) | 5.0 | 5.2 | 5.3 | 5.4 |
地震强度x(×1019)和震级y的模拟函数关系可以选用y=alg x+b(其中a,b为常数).利用散点图可得a=________,b=________.(取lg 2=0.3进行计算)
解析:由模拟函数及散点图得
两式相减得a(lg 3.2-lg 1.6)=0.2,
所以alg 2=0.2,解得a=,
所以b=5-lg 1.6=5-(4lg 2-1)=5-×=.
答案:
13.某人对东北一种松树的生长进行了研究,收集了其高度h(米)与生长时间t(年)的相关数据,选择h=mt+b与h=loga(t+1)来拟合h与t的关系,你认为哪个符合?并预测第8年的松树高度.
t(年) | 1 | 2 | 3 | 4 | 5 | 6 |
h(米) | 0.6 | 1 | 1.3 | 1.5 | 1.6 | 1.7 |
解:在坐标轴上标出t(年)与h(米)之间的关系如图所示.
由图象可以看出增长的速度越来越慢,用一次函数模型拟合不合适,则选用对数函数模型比较合理.
不妨将(2,1)代入h=loga(t+1)中,得1=loga3,解得a=3.
故可用函数h=log3(t+1)来拟合这个实际问题.
当t=8时,求得h=log3(8+1)=2,故可预测第8年松树的高度为2米.
[C级 拓展探究]
14.假设有一套住房的房价从2011年的20万元上涨到2021年的40万元.下表给出了两种价格增长方式,其中P1是按直线上升的房价,P2是按指数增长的房价,t是2011年以来经过的年数.
t | 0 | 5 | 10 | 15 | 20 |
P1/万元 | 20 |
| 40 |
|
|
P2/万元 | 20 |
| 40 |
|
|
(1)求函数P1=f(t)的解析式;
(2)求函数P2=g(t)的解析式;
(3)完成上表空格中的数据,并在同一直角坐标系中画出两个函数的图象,然后比较两种价格增长方式的差异.
解:(1)设f(t)=kt+b(k≠0),
则⇒
∴P1=f(t)=2t+20.
(2)设g(t)=mat(a>0,且a≠1),
则⇒
∴P2=g(t)=20×()t=20×2.
(3)图象如图.
表格中的数据如下表所示:
t | 0 | 5 | 10 | 15 | 20 |
P1/万元 | 20 | 30 | 40 | 50 | 60 |
P2/万元 | 20 | 20 | 40 | 40 | 80 |
由图象可以看出,在前10年,按P1增长的价格始终高于按P2增长的价格,但10年后,P2价格增长速度很快,远远超出P1的价格并且时间越长,差别越大.
高中数学湘教版(2019)必修 第一册3.1 函数课后作业题: 这是一份高中数学湘教版(2019)必修 第一册3.1 函数课后作业题,共9页。
高中3.1 函数同步训练题: 这是一份高中3.1 函数同步训练题,共6页。
高中数学湘教版(2019)必修 第一册第4章 幂函数、指数函数和对数函数4.5 函数模型及其应用当堂检测题: 这是一份高中数学湘教版(2019)必修 第一册第4章 幂函数、指数函数和对数函数4.5 函数模型及其应用当堂检测题,共6页。