所属成套资源:三年高考(2019-2021)物理试题分项汇编专题含答案
三年高考(2019-2021)物理试题分项汇编专题10磁场含答案
展开这是一份三年高考(2019-2021)物理试题分项汇编专题10磁场含答案,文件包含三年高考2019-2021物理试题分项汇编专题10磁场含答案doc、三年高考2019-2021物理试题分项汇编专题10磁场学生版doc等2份试卷配套教学资源,其中试卷共89页, 欢迎下载使用。
专题10 磁场
1.(2021·广东卷)截面为正方形的绝缘弹性长管中心有一固定长直导线,长管外表面固定着对称分布的四根平行长直导线,若中心直导线通入电流,四根平行直导线均通入电流,,电流方向如图所示,下列截面图中可能正确表示通电后长管发生形变的是( )
A.B.C.D.
2.(2021·河北卷)如图,距离为d的两平行金属板P、Q之间有一匀强磁场,磁感应强度大小为,一束速度大小为v的等离子体垂直于磁场喷入板间,相距为L的两光滑平行金属导轨固定在与导轨平面垂直的匀强磁场中,磁感应强度大小为,导轨平面与水平面夹角为,两导轨分别与P、Q相连,质量为m、电阻为R的金属棒垂直导轨放置,恰好静止,重力加速度为g,不计导轨电阻、板间电阻和等离子体中的粒子重力,下列说法正确的是( )
A.导轨处磁场的方向垂直导轨平面向上,
B.导轨处磁场的方向垂直导轨平面向下,
C.导轨处磁场的方向垂直导轨平面向上,
D.导轨处磁场的方向垂直导轨平面向下,
3.(2021·全国卷)两足够长直导线均折成直角,按图示方式放置在同一平面内,EO与在一条直线上,与OF在一条直线上,两导线相互绝缘,通有相等的电流I,电流方向如图所示。若一根无限长直导线通过电流I时,所产生的磁场在距离导线d处的磁感应强度大小为B,则图中与导线距离均为d的M、N两点处的磁感应强度大小分别为( )
A.B、0 B.0、2B C.2B、2B D.B、B
4.(2021·全国卷)如图,圆形区域内有垂直纸面向里的匀强磁场,质量为m、电荷量为的带电粒子从圆周上的M点沿直径方向射入磁场。若粒子射入磁场时的速度大小为,离开磁场时速度方向偏转;若射入磁场时的速度大小为,离开磁场时速度方向偏转,不计重力,则为( )
A. B. C. D.
5.(2021·浙江卷)如图所示是通有恒定电流的环形线圈和螺线管的磁感线分布图。若通电螺线管是密绕的,下列说法正确的是( )
A.电流越大,内部的磁场越接近匀强磁场
B.螺线管越长,内部的磁场越接近匀强磁场
C.螺线管直径越大,内部的磁场越接近匀强磁场
D.磁感线画得越密,内部的磁场越接近匀强磁场
6.(2021·浙江卷)如图所示,有两根用超导材料制成的长直平行细导线a、b,分别通以和流向相同的电流,两导线构成的平面内有一点p,到两导线的距离相等。下列说法正确的是( )
A.两导线受到的安培力
B.导线所受的安培力可以用计算
C.移走导线b前后,p点的磁感应强度方向改变
D.在离两导线所在的平面有一定距离的有限空间内,不存在磁感应强度为零的位置
7.(2021·山东卷)某离子实验装置的基本原理如图甲所示。Ⅰ区宽度为d,左边界与x轴垂直交于坐标原点O,其内充满垂直于平面向里的匀强磁场,磁感应强度大小为;Ⅱ区宽度为L,左边界与x轴垂直交于点,右边界与x轴垂直交于点,其内充满沿y轴负方向的匀强电场。测试板垂直x轴置于Ⅱ区右边界,其中心C与点重合。从离子源不断飘出电荷量为q、质量为m的正离子,加速后沿x轴正方向过O点,依次经Ⅰ区、Ⅱ区,恰好到达测试板中心C。已知离子刚进入Ⅱ区时速度方向与x轴正方向的夹角为。忽略离子间的相互作用,不计重力。
(1)求离子在Ⅰ区中运动时速度的大小v;
(2)求Ⅱ区内电场强度的大小E;
(3)保持上述条件不变,将Ⅱ区分为左右两部分,分别填充磁感应强度大小均为B(数值未知)方向相反且平行y轴的匀强磁场,如图乙所示。为使离子的运动轨迹与测试板相切于C点,需沿x轴移动测试板,求移动后C到的距离S。
8.(2021·全国卷)如图,长度均为l的两块挡板竖直相对放置,间距也为l,两挡板上边缘P和M处于同一水平线上,在该水平线的上方区域有方向竖直向下的匀强电场,电场强度大小为E;两挡板间有垂直纸面向外、磁感应强度大小可调节的匀强磁场。一质量为m,电荷量为q(q>0)的粒子自电场中某处以大小为v0的速度水平向右发射,恰好从P点处射入磁场,从两挡板下边缘Q和N之间射出磁场,运动过程中粒子未与挡板碰撞。已知粒子射入磁场时的速度方向与PQ的夹角为60°,不计重力。
(1)求粒子发射位置到P点的距离;
(2)求磁感应强度大小的取值范围;
(3)若粒子正好从QN的中点射出磁场,求粒子在磁场中的轨迹与挡板MN的最近距离。
9.(2021·河北卷)如图,一对长平行栅极板水平放置,极板外存在方向垂直纸面向外、磁感应强度大小为B的匀强磁场,极板与可调电源相连,正极板上O点处的粒子源垂直极板向上发射速度为、带正电的粒子束,单个粒子的质量为m、电荷量为q,一足够长的挡板与正极板成倾斜放置,用于吸收打在其上的粒子,C、P是负极板上的两点,C点位于O点的正上方,P点处放置一粒子靶(忽略靶的大小),用于接收从上方打入的粒子,长度为,忽略栅极的电场边缘效应、粒子间的相互作用及粒子所受重力。。
(1)若粒子经电场一次加速后正好打在P点处的粒子靶上,求可调电源电压的大小;
(2)调整电压的大小,使粒子不能打在挡板上,求电压的最小值;
(3)若粒子靶在负极板上的位置P点左右可调,则负极板上存在H、S两点(,H、S两点末在图中标出)、对于粒子靶在区域内的每一点,当电压从零开始连续缓慢增加时,粒子靶均只能接收到n()种能量的粒子,求和的长度(假定在每个粒子的整个运动过程中电压恒定)。
10.(2021·浙江卷)如图甲所示,空间站上某种离子推进器由离子源、间距为d的中间有小孔的两平行金属板M、N和边长为L的立方体构成,其后端面P为喷口。以金属板N的中心O为坐标原点,垂直立方体侧面和金属板建立x、y和z坐标轴。M、N板之间存在场强为E、方向沿z轴正方向的匀强电场;立方体内存在磁场,其磁感应强度沿z方向的分量始终为零,沿x和y方向的分量和随时间周期性变化规律如图乙所示,图中可调。氙离子()束从离子源小孔S射出,沿z方向匀速运动到M板,经电场加速进入磁场区域,最后从端面P射出,测得离子经电场加速后在金属板N中心点O处相对推进器的速度为v0。已知单个离子的质量为m、电荷量为,忽略离子间的相互作用,且射出的离子总质量远小于推进器的质量。
(1)求离子从小孔S射出时相对推进器的速度大小vS;
(2)不考虑在磁场突变时运动的离子,调节的值,使得从小孔S射出的离子均能从喷口后端面P射出,求的取值范围;
(3)设离子在磁场中的运动时间远小于磁场变化周期T,单位时间从端面P射出的离子数为n,且。求图乙中时刻离子束对推进器作用力沿z轴方向的分力。
11.(2021·广东卷)图是一种花瓣形电子加速器简化示意图,空间有三个同心圆a、b、c围成的区域,圆a内为无场区,圆a与圆b之间存在辐射状电场,圆b与圆c之间有三个圆心角均略小于90°的扇环形匀强磁场区Ⅰ、Ⅱ和Ⅲ。各区感应强度恒定,大小不同,方向均垂直纸面向外。电子以初动能从圆b上P点沿径向进入电场,电场可以反向,保证电子每次进入电场即被全程加速,已知圆a与圆b之间电势差为U,圆b半径为R,圆c半径为,电子质量为m,电荷量为e,忽略相对论效应,取。
(1)当时,电子加速后均沿各磁场区边缘进入磁场,且在电场内相邻运动轨迹的夹角均为45°,最终从Q点出射,运动轨迹如图中带箭头实线所示,求Ⅰ区的磁感应强度大小、电子在Ⅰ区磁场中的运动时间及在Q点出射时的动能;
(2)已知电子只要不与Ⅰ区磁场外边界相碰,就能从出射区域出射。当时,要保证电子从出射区域出射,求k的最大值。
12.(2021·湖南卷)带电粒子流的磁聚焦和磁控束是薄膜材料制备的关键技术之一、带电粒子流(每个粒子的质量为、电荷量为)以初速度垂直进入磁场,不计重力及带电粒子之间的相互作用。对处在平面内的粒子,求解以下问题。
(1)如图(a),宽度为的带电粒子流沿轴正方向射入圆心为、半径为的圆形匀强磁场中,若带电粒子流经过磁场后都汇聚到坐标原点,求该磁场磁感应强度的大小;
(2)如图(a),虚线框为边长等于的正方形,其几何中心位于。在虚线框内设计一个区域面积最小的匀强磁场,使汇聚到点的带电粒子流经过该区域后宽度变为,并沿轴正方向射出。求该磁场磁感应强度的大小和方向,以及该磁场区域的面积(无需写出面积最小的证明过程);
(3)如图(b),虛线框Ⅰ和Ⅱ均为边长等于的正方形,虚线框Ⅲ和Ⅳ均为边长等于的正方形。在Ⅰ、Ⅱ、Ⅲ和Ⅳ中分别设计一个区域面积最小的匀强磁场,使宽度为的带电粒子流沿轴正方向射入Ⅰ和Ⅱ后汇聚到坐标原点,再经过Ⅲ和Ⅳ后宽度变为,并沿轴正方向射出,从而实现带电粒子流的同轴控束。求Ⅰ和Ⅲ中磁场磁感应强度的大小,以及Ⅱ和Ⅳ中匀强磁场区域的面积(无需写出面积最小的证明过程)。
13.(2021·浙江卷)在芯片制造过程中,离子注入是其中一道重要的工序。如图所示是离子注入工作原理示意图,离子经加速后沿水平方向进入速度选择器,然后通过磁分析器,选择出特定比荷的离子,经偏转系统后注入处在水平面内的晶圆(硅片)。速度选择器、磁分析器和偏转系统中的匀强磁场的磁感应强度大小均为B,方向均垂直纸面向外;速度选择器和偏转系统中的匀强电场场强大小均为E,方向分别为竖直向上和垂直纸面向外。磁分析器截面是内外半径分别为R1和R2的四分之一圆环,其两端中心位置M和N处各有一个小孔;偏转系统中电场和磁场的分布区域是同一边长为L的正方体,其速度选择器底面与晶圆所在水平面平行,间距也为L。当偏转系统不加电场及磁场时,离子恰好竖直注入到晶圆上的O点(即图中坐标原点,x轴垂直纸面向外)。整个系统置于真空中,不计离子重力,打在晶圆上的离子,经过电场和磁场偏转的角度都很小。当α很小时,有,。求:
(1)离子通过速度选择器后的速度大小v和磁分析器选择出来离子的比荷;
(2)偏转系统仅加电场时离子注入晶圆的位置,用坐标(x,y)表示;
(3)偏转系统仅加磁场时离子注入晶圆的位置,用坐标(x,y)表示;
(4)偏转系统同时加上电场和磁场时离子注入晶圆的位置,用坐标(x,y)表示,并说明理由。
1.(2020·海南卷)如图,足够长的间距的平行光滑金属导轨MN、PQ固定在水平面内,导轨间存在一个宽度的匀强磁场区域,磁感应强度大小为,方向如图所示.一根质量,阻值的金属棒a以初速度从左端开始沿导轨滑动,穿过磁场区域后,与另一根质量,阻值的原来静置在导轨上的金属棒b发生弹性碰撞,两金属棒始终与导轨垂直且接触良好,导轨电阻不计,则( )
A.金属棒a第一次穿过磁场时做匀减速直线运动
B.金属棒a第一次穿过磁场时回路中有逆时针方向的感应电流
C.金属棒a第一次穿过磁场区域的过程中,金属棒b上产生的焦耳热为
D.金属棒a最终停在距磁场左边界处
2.(2020·天津卷)如图所示,在Oxy平面的第一象限内存在方向垂直纸面向里,磁感应强度大小为B的匀强磁场。一带电粒子从y轴上的M点射入磁场,速度方向与y轴正方向的夹角。粒子经过磁场偏转后在N点(图中未画出)垂直穿过x轴。已知,粒子电荷量为q,质量为m,重力不计。则( )
A.粒子带负电荷 B.粒子速度大小为
C.粒子在磁场中运动的轨道半径为a D.N与O点相距
3.(2020·海南卷)如图,在一个蹄形电磁铁的两个磁极的正中间放置一根长直导线,当导线中通有垂直于纸面向里的电流I时,导线所受安培力的方向为( )
A.向上 B.向下 C.向左 D.向右
4.(2020·北京卷)如图所示,在带负电荷的橡胶圆盘附近悬挂一个小磁针。现驱动圆盘绕中心轴高速旋转,小磁针发生偏转。下列说法正确的是( )
A.偏转原因是圆盘周围存在电场
B.偏转原因是圆盘周围产生了磁场
C.仅改变圆盘的转动方向,偏转方向不变
D.仅改变圆盘所带电荷的电性,偏转方向不变
5.(2020·浙江卷)特高压直流输电是国家重点能源工程。如图所示,两根等高、相互平行的水平长直导线分别通有方向相同的电流和,。a、b、c三点连线与两根导线等高并垂直,b点位于两根导线间的中点,a、c两点与b点距离相等,d点位于b点正下方。不考虑地磁场的影响,则( )
A.b点处的磁感应强度大小为0
B.d点处的磁感应强度大小为0
C.a点处的磁感应强度方向竖直向下
D.c点处的磁感应强度方向竖直向下
6.(2020·全国卷)真空中有一匀强磁场,磁场边界为两个半径分别为a和3a的同轴圆柱面,磁场的方向与圆柱轴线平行,其横截面如图所示。一速率为v的电子从圆心沿半径方向进入磁场。已知电子质量为m,电荷量为e,忽略重力。为使该电子的运动被限制在图中实线圆围成的区域内,磁场的磁感应强度最小为( )
A. B. C. D.
7.(2020·全国卷)一匀强磁场的磁感应强度大小为B,方向垂直于纸面向外,其边界如图中虚线所示,为半圆,ac、bd与直径ab共线,ac间的距离等于半圆的半径。一束质量为m、电荷量为q(q>0)的粒子,在纸面内从c点垂直于ac射入磁场,这些粒子具有各种速率。不计粒子之间的相互作用。在磁场中运动时间最长的粒子,其运动时间为( )
A. B. C. D.
8.(2020·全国卷)CT扫描是计算机X射线断层扫描技术的简称,CT扫描机可用于对多种病情的探测。图(a)是某种CT机主要部分的剖面图,其中X射线产生部分的示意图如图(b)所示。图(b)中M、N之间有一电子束的加速电场,虚线框内有匀强偏转磁场;经调节后电子束从静止开始沿带箭头的实线所示的方向前进,打到靶上,产生X射线(如图中带箭头的虚线所示);将电子束打到靶上的点记为P点。则( )
A.M处的电势高于N处的电势
B.增大M、N之间的加速电压可使P点左移
C.偏转磁场的方向垂直于纸面向外
D.增大偏转磁场磁感应强度的大小可使P点左移
9.(2020·浙江卷)如图所示,在光滑绝缘水平面上,两条固定的相互垂直彼此绝缘的导线通以大小相同的电流I。在角平分线上,对称放置四个相同的正方形金属框。当电流在相同时间间隔内增加相同量,则( )
A.1、3线圈静止不动,2、4线圈沿着对角线向内运动
B.1、3线圈静止不动,2、4线圈沿着对角线向外运动
C.2、4线圈静止不动,1、3线圈沿着对角线向内运动
D.2、4线圈静止不动,1、3线圈沿着对角线向外运动
10.(2020·海南卷)如图,虚线MN左侧有一个正三角形ABC,C点在MN上,AB与MN平行,该三角形区域内存在垂直于纸面向外的匀强磁场;MN右侧的整个区域存在垂直于纸面向里的匀强磁场,一个带正电的离子(重力不计)以初速度从AB的中点O沿OC方向射入三角形区域,偏转后从MN上的Р点(图中未画出)进入MN右侧区域,偏转后恰能回到O点。已知离子的质量为m,电荷量为q,正三角形的边长为d:
(1)求三角形区域内磁场的磁感应强度;
(2)求离子从O点射入到返回O点所需要的时间;
(3)若原三角形区域存在的是一磁感应强度大小与原来相等的恒磁场,将MN右侧磁场变为一个与MN相切于P点的圆形匀强磁场让离子从P点射入圆形磁场,速度大小仍为,方向垂直于BC,始终在纸面内运动,到达О点时的速度方向与OC成角,求圆形磁场的磁感应强度。
11.(2020·北京卷)如图甲所示,真空中有一长直细金属导线,与导线同轴放置一半径为的金属圆柱面。假设导线沿径向均匀射出速率相同的电子,已知电子质量为,电荷量为。不考虑出射电子间的相互作用。
(1)可以用以下两种实验方案测量出射电子的初速度:
a.在柱面和导线之间,只加恒定电压;
b.在柱面内,只加与平行的匀强磁场。
当电压为或磁感应强度为时,刚好没有电子到达柱面。分别计算出射电子的初速度。
(2)撤去柱面,沿柱面原位置放置一个弧长为、长度为的金属片,如图乙所示。在该金属片上检测到出射电子形成的电流为,电子流对该金属片的压强为。求单位长度导线单位时间内出射电子的总动能。
12.(2020·江苏卷)空间存在两个垂直于平面的匀强磁场,y轴为两磁场的边界,磁感应强度分别为、。甲、乙两种比荷不同的粒子同时从原点O沿x轴正向射入磁场,速度均为v。甲第1次、第2次经过y轴的位置分别为P、Q,其轨迹如图所示。甲经过Q时,乙也恰好同时经过该点。已知甲的质量为m,电荷量为q。不考虑粒子间的相互作用和重力影响。求:
(1)Q到O的距离d;
(2)甲两次经过P点的时间间隔;
(3)乙的比荷可能的最小值。
13.(2020·山东卷)某型号质谱仪的工作原理如图甲所示。M、N为竖直放置的两金属板,两板间电压为U,Q板为记录板,分界面P将N、Q间区域分为宽度均为d的I、Ⅱ两部分,M、N、P、Q所在平面相互平行,a、b为M、N上两正对的小孔。以a、b所在直线为z轴, 向右为正方向,取z轴与Q板的交点O为坐标原点,以平行于Q板水平向里为x轴正方向,竖直向上为y轴正方向,建立空间直角坐标系Oxyz。区域I、Ⅱ内分别充满沿x轴正方向的匀强磁场和匀强电场,磁感应强度大小、电场强度大小分别为B和E。一质量为m,电荷量为+q的粒子,从a孔飘入电场(初速度视为零),经b孔进入磁场,过P面上的c点(图中未画出)进入电场,最终打到记录板Q上。不计粒子重力。
(1)求粒子在磁场中做圆周运动的半径R以及c点到z轴的距离L;
(2)求粒子打到记录板上位置的x坐标;
(3)求粒子打到记录板上位置的y坐标(用R、d表示);
(4)如图乙所示,在记录板上得到三个点s1、s2、s3,若这三个点是质子、氚核、氦核的位置,请写出这三个点分别对应哪个粒子(不考虑粒子间的相互作用,不要求写出推导过程)。
14.(2020·浙江卷)某种离子诊断测量简化装置如图所示。竖直平面内存在边界为矩形、方向垂直纸面向外、磁感应强度大小为B的匀强磁场,探测板平行于水平放置,能沿竖直方向缓慢移动且接地。a、b、c三束宽度不计、间距相等的离子束中的离子均以相同速度持续从边界水平射入磁场,b束中的离子在磁场中沿半径为R的四分之一圆弧运动后从下边界竖直向下射出,并打在探测板的右边缘D点。已知每束每秒射入磁场的离子数均为N,离子束间的距离均为,探测板的宽度为,离子质量均为m、电荷量均为q,不计重力及离子间的相互作用。
(1)求离子速度v的大小及c束中的离子射出磁场边界时与H点的距离s;
(2)求探测到三束离子时探测板与边界的最大距离;
(3)若打到探测板上的离子被全部吸收,求离子束对探测板的平均作用力的竖直分量F与板到距离L的关系。
15.(2020·全国卷)如图,在0≤x≤h,区域中存在方向垂直于纸面的匀强磁场,磁感应强度B的大小可调,方向不变。一质量为m,电荷量为q(q>0)的粒子以速度v0从磁场区域左侧沿x轴进入磁场,不计重力。
(1)若粒子经磁场偏转后穿过y轴正半轴离开磁场,分析说明磁场的方向,并求在这种情况下磁感应强度的最小值Bm;
(2)如果磁感应强度大小为,粒子将通过虚线所示边界上的一点离开磁场。求粒子在该点的运动方向与x轴正方向的夹角及该点到x轴的距离。
16.(2020·浙江卷)通过测量质子在磁场中的运动轨迹和打到探测板上的计数率(即打到探测板上质子数与衰变产生总质子数N的比值),可研究中子()的衰变。中子衰变后转化成质子和电子,同时放出质量可视为零的反中微子。如图所示,位于P点的静止中子经衰变可形成一个质子源,该质子源在纸面内各向均匀地发射N个质子。在P点下方放置有长度以O为中点的探测板,P点离探测板的垂直距离为a。在探测板的上方存在方向垂直纸面向里,磁感应强度大小为B的匀强磁场。
已知电子质量,中子质量,质子质量(c为光速,不考虑粒子之间的相互作用)。
若质子的动量。
(1)写出中子衰变的核反应式,求电子和反中微子的总动能(以为能量单位);
(2)当,时,求计数率;
(3)若取不同的值,可通过调节的大小获得与(2)问中同样的计数率,求与的关系并给出的范围。
1.(2019·海南卷)如图,虚线MN的右侧有方向垂直于纸面向里的匀强磁场,两电荷量相同的粒子P、Q从磁场边界的M点先后射入磁场,在纸面内运动.射入磁场时,P的速度垂直于磁场边界,Q的速度与磁场边界的夹角为45°。已知两粒子均从N点射出磁场,且在磁场中运动的时间相同,则( )
A.P和Q的质量之比为1:2 B.P和Q的质量之比为
C.P和Q速度大小之比为 D.P和Q速度大小之比为2:1
2.(2019·江苏卷)如图所示,在光滑的水平桌面上,a和b是两条固定的平行长直导线,通过的电流强度相等.矩形线框位于两条导线的正中间,通有顺时针方向的电流,在a、b产生的磁场作用下静止.则a、b的电流方向可能是
A.均向左
B.均向右
C.a的向左,b的向右
D.a的向右,b的向左
3.(2019·全国卷)空间存在一方向与直面垂直、大小随时间变化的匀强磁场,其边界如图(a)中虚线MN所示,一硬质细导线的电阻率为ρ、横截面积为S,将该导线做成半径为r的圆环固定在纸面内,圆心O在MN上.t=0时磁感应强度的方向如图(a)所示:磁感应强度B随时间t的变化关系如图(b)所示,则在t=0到t=t1的时间间隔内
A.圆环所受安培力的方向始终不变
B.圆环中的感应电流始终沿顺时针方向
C.圆环中的感应电流大小为
D.圆环中的感应电动势大小为
4.(2019·海南卷)如图,一段半圆形粗铜线固定在绝缘水平桌面(纸面)上,铜线所在空间有一匀强磁场,磁场方向竖直向下,当铜线通有顺时针方向电流时,铜线所受安培力的方向( )
A.向前 B.向后 C.向左 D.向右
5.(2019·全国卷)如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为和B、方向均垂直于纸面向外的匀强磁场.一质量为m、电荷量为q(q>0)的粒子垂直于x轴射入第二象限,随后垂直于y轴进入第一象限,最后经过x轴离开第一象限.粒子在磁场中运动的时间为
A. B. C. D.
6.(2019·北京卷)如图所示,正方形区域内存在垂直纸面的匀强磁场.一带电粒子垂直磁场边界从a点射入,从b点射出.下列说法正确的是
A.粒子带正电
B.粒子在b点速率大于在a点速率
C.若仅减小磁感应强度,则粒子可能从b点右侧射出
D.若仅减小入射速率,则粒子在磁场中运动时间变短
7.(2019·天津卷)笔记本电脑机身和显示屏对应部位分别有磁体和霍尔元件。当显示屏开启时磁体远离霍尔元件,电脑正常工作:当显示屏闭合时磁体靠近霍尔元件,屏幕熄灭,电脑进入休眠状态。如图所示,一块宽为、长为的矩形半导体霍尔元件,元件内的导电粒子是电荷量为的自由电子,通入方向向右的电流时,电子的定向移动速度为。当显示屏闭合时元件处于垂直于上表面、方向向下的匀强磁场中,于是元件的前、后表面间出现电压,以此控制屏幕的熄灭。则元件的( )
A.前表面的电势比后表面的低 B.前、后表面间的电压与无关
C.前、后表面间的电压与成正比 D.自由电子受到的洛伦兹力大小为
8.(2019·全国卷)如图,等边三角形线框LMN由三根相同的导体棒连接而成,固定于匀强磁场中,线框平面与磁感应强度方向垂直,线框顶点M、N与直流电源两端相接,已如导体棒MN受到的安培力大小为F,则线框LMN受到的安培力的大小为( )
A.2F B.1.5F C.0.5F D.0
9.(2019·全国卷)如图,边长为l的正方形abcd内存在匀强磁场,磁感应强度大小为B,方向垂直于纸面(abcd所在平面)向外.ab边中点有一电子发源O,可向磁场内沿垂直于ab边的方向发射电子.已知电子的比荷为k.则从a、d两点射出的电子的速度大小分别为
A., B.,
C., D.,
10.(2019·浙江卷)在磁场中的同一位置放置一条直导线,导线的方向与磁场方向垂直,则下列描述导线受到的安培力F的大小与通过导线的电流I的关系图象正确的是( )
A. B.
C. D.
11.(2019·浙江卷)下列陈述与事实相符的是
A.牛顿测定了引力常量
B.法拉第发现了电流周围存在磁场
C.安培发现了静电荷间的相互作用规律
D.伽利略指出了力不是维持物体运动的原因
12.(2019·浙江卷)电流天平是一种测量磁场力的装置,如图所示.两相距很近的通电平行线圈Ⅰ和Ⅱ,线圈Ⅰ固定,线圈Ⅱ置于天平托盘上.当两线圈均无电流通过时,天平示数恰好为零.下列说法正确的是( )
A.当天平示数为负时,两线圈电流方向相同
B.当天平示数为正时,两线圈电流方向相同
C.线圈Ⅰ对线圈Ⅱ的作用力大于线圈Ⅱ对线圈Ⅰ的作用力
D.线圈Ⅰ对线圈Ⅱ的作用力与托盘对线圈Ⅱ的作用力是一对相互作用力
13.(2019·浙江卷)磁流体发电的原理如图所示.将一束速度为v的等离子体垂直于磁场方向喷入磁感应强度为B的匀强磁场中,在相距为d、宽为a、长为b的两平行金属板间便产生电压.如果把上、下板和电阻R连接,上、下板就是一个直流电源的两极.若稳定时等离子体在两板间均匀分布,电阻率为ρ.忽略边缘效应,下列判断正确的是( )
A.上板为正极,电流
B.上板为负极,电流
C.下板为正极,电流
D.下板为负极,电流
14.(2019·浙江卷)发现电流磁效应的物理学家是( )
A.法拉第
B.奥斯特
C.库仑
D.安培
15.(2019·江苏卷)如图所示,匀强磁场的磁感应强度大小为B.磁场中的水平绝缘薄板与磁场的左、右边界分别垂直相交于M、N,MN=L,粒子打到板上时会被反弹(碰撞时间极短),反弹前后水平分速度不变,竖直分速度大小不变、方向相反.质量为m、电荷量为-q的粒子速度一定,可以从左边界的不同位置水平射入磁场,在磁场中做圆周运动的半径为d,且d
(2)欲使粒子从磁场右边界射出,求入射点到M的最大距离dm;
(3)从P点射入的粒子最终从Q点射出磁场,PM=d,QN=,求粒子从P到Q的运动时间t.
16.(2019·全国卷)如图,在直角三角形OPN区域内存在匀强磁场,磁感应强度大小为B、方向垂直于纸面向外.一带正电的粒子从静止开始经电压U加速后,沿平行于x轴的方向射入磁场;一段时间后,该粒子在OP边上某点以垂直于x轴的方向射出.已知O点为坐标原点,N点在y轴上,OP与x轴的夹角为30°,粒子进入磁场的入射点与离开磁场的出射点之间的距离为d,不计重力.求
(1)带电粒子的比荷;
(2)带电粒子从射入磁场到运动至x轴的时间.
17.(2019·浙江卷)有一种质谱仪由静电分析器和磁分析器组成,其简化原理如图所示.左侧静电分析器中有方向指向圆心O、与O点等距离各点的场强大小相同的径向电场,右侧的磁分析器中分布着方向垂直于纸面向外的匀强磁场,其左边界与静电分析器的右边界平行,两者间距近似为零.离子源发出两种速度均为v0、电荷量均为q、质量分别为m和0.5m的正离子束,从M点垂直该点电场方向进入静电分析器.在静电分析器中,质量为m的离子沿半径为r0的四分之一圆弧轨道做匀速圆周运动,从N点水平射出,而质量为0.5m的离子恰好从ON连线的中点P与水平方向成θ角射出,从静电分析器射出的这两束离子垂直磁场方向射入磁分析器中,最后打在放置于磁分析器左边界的探测板上,其中质量为m的离子打在O点正下方的Q点.已知OP=0.5r0,OQ=r0,N、P两点间的电势差,,不计重力和离子间相互作用。
(1)求静电分析器中半径为r0处的电场强度E0和磁分析器中的磁感应强度B的大小;
(2)求质量为0.5m的离子到达探测板上的位置与O点的距离l(用r0表示);
(3)若磁感应强度在(B—△B)到(B+△B)之间波动,要在探测板上完全分辨出质量为m和0.5m的两束离子,求的最大值。
18.(2019·浙江卷)小明受回旋加速器的启发,设计了如图1所示的“回旋变速装置”.两相距为d的平行金属栅极板M、N,板M位于x轴上,板N在它的正下方.两板间加上如图2所示的幅值为U0的交变电压,周期.板M上方和板N下方有磁感应强度大小均为B、方向相反的匀强磁场.粒子探测器位于y轴处,仅能探测到垂直射入的带电粒子.有一沿x轴可移动、粒子出射初动能可调节的粒子发射源,沿y轴正方向射出质量为m、电荷量为q(q>0)的粒子.t=0时刻,发射源在(x,0)位置发射一带电粒子.忽略粒子的重力和其它阻力,粒子在电场中运动的时间不计.
(1)若粒子只经磁场偏转并在y=y0处被探测到,求发射源的位置和粒子的初动能;
(2)若粒子两次进出电场区域后被探测到,求粒子发射源的位置x与被探测到的位置y之间的关系
相关试卷
这是一份三年高考(2019-2021)物理试题分项汇编专题16实验含答案,文件包含三年高考2019-2021物理试题分项汇编专题16实验含答案doc、三年高考2019-2021物理试题分项汇编专题16实验学生版doc等2份试卷配套教学资源,其中试卷共110页, 欢迎下载使用。
这是一份三年高考(2019-2021)物理试题分项汇编专题15近代物理含答案,文件包含三年高考2019-2021物理试题分项汇编专题15近代物理含答案doc、三年高考2019-2021物理试题分项汇编专题15近代物理学生版doc等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。
这是一份三年高考(2019-2021)物理试题分项汇编专题14光学含答案,文件包含三年高考2019-2021物理试题分项汇编专题14光学含答案doc、三年高考2019-2021物理试题分项汇编专题14光学学生版doc等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。