人教A版 (2019)选择性必修 第二册5.2 导数的运算评课ppt课件
展开高铁是一种非常受欢迎的交通工具,既低碳又快捷.设一高铁走过的路程s(单位:m)关于时间t(单位:s)的函数s=f(t)=2t2,求它的瞬时速度,即求f(t)的导数.根据导数的定义,就是求当Δt→0时, 所趋近的那个定值,运算比较复杂,而且,有的函数如y=sin x,y=ln x等很难运用定义求导数.是否有更简便的求导数的方法呢?
一、几个常用函数的导数
微练习已知f(x)=x2,则f[f'(-2)]的值等于 .
解析:因为f(x)=x2,所以f'(x)=2x,于是f'(-2)=-4,故f[f'(-2)]=f(-4)=(-4)2=16.答案:16
二、基本初等函数的导数公式
名师点析1.函数f(x)=ln x与f(x)=lgax的导数公式之间有内在联系,根据对数的换底公式,可以得到
微练习求下列函数的导数:
微点拨目前,求解函数导数只适用基本初等函数的求导,若形式不一致,则需先化简后求导.如
可先化为f(x)=cs x之后再求导.
三、导数的运算法则1.[f(x)±g(x)]'=f'(x)±g'(x).2.[f(x)·g(x)]'=f'(x)g(x)+f(x)g'(x),特别地,[cf(x)]'=cf'(x).
名师点析两个函数和与差的导数运算法则可以推广到若干个函数和与差的情形:[f1(x)±f2(x)±…±fn(x)]'=f1'(x)±f2'(x)±…±fn'(x).
微练习(1)函数y=x2-ln x的导数为 ; (2)函数y=xcs x的导数为 ;
(3)函数y= 的导数为 .
导数公式与运算法则的简单应用例1求下列函数的导数:
(4)y=(x+1)(x-1)(x2+1);(5)y=tan x.
分析:分析每个函数的解析式的构成特点,紧扣求导公式和运算法则进行求解,必要时应先对解析式进行恒等变形.
反思感悟求导数的解题策略1.理解并掌握求导法则和公式的结构规律,熟记常见基本初等函数的导数公式是进行求导运算的前提.2.进行求导运算时,要善于分析函数解析式的结构特点,必要时应先对解析式进行恒等变形,化简解析式,再求导.3.要特别注意“ 与ln x”“ax与lgax”“sin x与cs x”的导数区别.
变式训练1求下列函数的导数:
利用导数公式与运算法则求复杂函数的导数例2求下列函数的导数:(2)y=3xex-2x+e;
反思感悟求复杂函数的导数的方法求函数的导数时,一般要遵循“先化简再求导”的原则,这样一方面可以简化求导的过程,另一方面可以解决有些函数根本没法直接运用公式和法则求导的问题.尤其是当函数解析式中含有三角函数时,更需要先运用相关的三角函数公式对解析式进行化简与整理,最后再套用公式求导.
延伸探究1(变条件)把例2(4)的函数换成“y=xtan x”,求其导数.
导数几何意义的综合问题例3已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点的坐标.
分析:利用导数的几何意义求解,但要注意(2)中切线经过原点,而原点不在曲线上,故应另设切点.
解:(1)∵f'(x)=(x3+x-16)'=3x2+1,∴在点(2,-6)处的切线的斜率k=f'(2)=3×22+1=13,故切线的方程为y+6=13(x-2),即13x-y-32=0.
因此y0=(-2)3+(-2)-16=-26,k=3×(-2)2+1=13.故直线l的方程为y=13x,切点坐标为(-2,-26).
∴y0=(-2)3+(-2)-16=-26,k=3×(-2)2+1=13.故直线l的方程为y=13x,切点坐标为(-2,-26).
反思感悟曲线切线方程的求解方法求曲线的切线方程要注意“过点P的切线”与“在点P处的切线”的差异:过点P的切线中,点P不一定是切点,点P不一定在已知曲线上;而在点P处的切线,必以点P为切点.遇到类似问题时,必须分清所给的点是否是在曲线上,即是不是切点.如果是切点,那么该点处的导数即为切线的斜率;如果不是切点,那么应先设出切点坐标,再利用两点连线的斜率公式与导数建立联系,进行求解.
变式训练2(1)(2020河南高三月考)已知函数f(x)=3x2+aex,曲线y=f(x)在点x=0处的切线与直线y= x+1垂直,则a= . (2)(2019河北石家庄二中高二月考)已知曲线f(x)=ex,则过原点的切线方程为( )A.y=x B.y=x+1C.y=ex-1D.y=ex
解析:(1)f'(x)=6x+aex,f'(0)=a,
所以切点为(1,e),切线的斜率k=f'(1)=e,所以过原点的切线方程为y-e=e(x-1),即y=ex.故选D.
答案:(1)-2 (2)D
复杂函数的求导典例求下列函数的导数:
分析:若所给函数解析式较为复杂,不能直接套用导数公式和导数运算法则时,则可先对函数解析式进行适当的变形与化简,再用相关公式和法则求导.
反思感悟对于较为复杂函数的求导:首先观察其形式是否为基本初等函数形式或满足四则运算形式;其次,若满足,直接利用求导公式或法则,若不满足,则转化为上述两形式后再求导.
变式训练求下列函数的导数:
1.(2020陕西高二期末)下列函数求导:①(2x)'=2xlg2e;
数为( )A.1B.2C.3D.4
2.(2020四川双流中学高二月考)下列结论不正确的是( )A.若f(x)=0,则f'(x)=0B.若f(x)=cs x,则f'(x)=sin x
解析:对A,f(x)为常数函数,显然成立;对B,f'(x)=-sin x,故B错误;对C,D,显然都成立.故选B.答案:B
3.设y=-2exsin x,则y'等于( )A.-2excs xB.-2exsin xC.2exsin xD.-2ex(sin x+cs x)
解析:∵y=-2exsin x,∴y'=-2exsin x-2excs x=-2ex(sin x+cs x).答案:D
4.(2020山东高二期末)已知直线y=x+b是曲线y=ax2+1的切线,也是曲线y=ln x的切线,则a= ,b= .
5.求下列函数的导数:
数学选择性必修 第二册5.2 导数的运算多媒体教学课件ppt: 这是一份数学选择性必修 第二册5.2 导数的运算多媒体教学课件ppt,共18页。PPT课件主要包含了学习目标,复习回顾,新课导入,概念生成,导数的运算法则1,典例分析,导数的运算法则2,导数的运算法则3,导数运算法则汇总,巩固练习等内容,欢迎下载使用。
高中数学人教A版 (2019)选择性必修 第二册5.2 导数的运算试讲课课件ppt: 这是一份高中数学人教A版 (2019)选择性必修 第二册5.2 导数的运算试讲课课件ppt
高中数学人教A版 (2019)选择性必修 第二册5.2 导数的运算背景图ppt课件: 这是一份高中数学人教A版 (2019)选择性必修 第二册5.2 导数的运算背景图ppt课件,共52页。PPT课件主要包含了导数计算的综合应用,点击右图进入等内容,欢迎下载使用。