2022年贵州省贵阳市中考数学模拟题(三)(word版含答案)
展开2022年贵州省贵阳市中考数学模拟题(三)
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.实数100的倒数是( )
A.100 B. C. D.
2.如图是一个几何体的主视图,则该几何体是( )
A. B. C. D.
3.到2020年底,我国完成了“脱贫攻坚”任务,有约9980万的贫困人口实现了脱贫.将数据9980万用科学记数法表示是( )
A. B. C. D.
4.某校有4000名学生,随机抽取了400名学生进行体重调查,下列说法错误的是( )
A.总体是该校4000名学生的体重 B.个体是每一个学生
C.样本是抽取的400名学生的体重 D.样本容量是400
5.如图,在中,,平分,则的度数为( )
A. B. C. D.
6.学校为了解“阳光体育”活动开展情况,随机调查了50名学生一周参加体育锻炼时间,数据如下表所示:
人数(人) | 9 | 16 | 14 | 11 |
时间(小时) | 7 | 8 | 9 | 10 |
这些学生一周参加体育锻炼时间的众数、中位数分别是( )A.16,15 B.11,15 C.8,8.5 D.8,9
7.分式方程的解是( )
A. B. C. D.
8.已知一个多边形内角和是外角和的4倍,则这个多边形是( )
A.八边形 B.九边形 C.十边形 D.十二边形
9.如图,将△ABC沿BC边向右平移得到△DEF,DE交AC于点G.若BC:EC=3:1.S△ADG=16.则S△CEG的值为( )
A.2 B.4 C.6 D.8
10.某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是( )
A.先打九五折,再打九五折 B.先提价,再打六折
C.先提价,再降价 D.先提价,再降价
11.如图,在等腰△ABC中,∠BAC=120°,AD是∠BAC的角平分线,且AD=6,以点A为圆心,AD长为半径画弧,交AB于点E,交AC于点F,将阴影部分剪掉,余下扇形AEF,将扇形AEF围成一个圆锥的侧面,AE与AF正好重合,圆锥侧面无重叠,求这个圆锥的高为( )
A.2 B. C.4 D.
12.如图,矩形纸片ABCD中,AB=6,BC=8.现将其沿AE对折,使得点B落在边AD上的点F处,折痕与边BC交于点E,则CF的长为( )
A.3 B.2 C.8 D.10
二、填空题
13.如图是一片枫叶标本,其形状呈“掌状五裂型”,裂片具有少数突出的齿.将其放在平面直角坐标系中,表示叶片“顶部”,两点的坐标分别为,,则叶杆“底部”点的坐标为__________.
14.如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且,则的值为_____.
15.有四张大小和背面完全相同的不透明卡片,正面分别印有等边三角形、平行四边形、菱形和圆,将这四张卡片背面朝上洗匀,从中随机抽取两张卡片,所抽取的卡片正面上的图形都既是轴对称图形,又是中心对称图形的概率是__________.
16.如图,△ABC中,AB=10,△ABC的面积是25,P是AB边上的一个动点,连接PC,以PA和PC为一组邻边作平行四边形APCQ,则线段AQ的最小值是 ____________.
三、解答题
17.(1)计算:|-|-2sin 45°+(1-)0+×;
(2)先化简,再求值:÷(m+2-),其中m2+3m=1.
18.“惜餐为荣,殄物为耻”,为了解落实“光盘行动”的情况,某校数学兴趣小组的同学调研了七、八年级部分班级某一天的餐厨垃圾质量.从七、八年级中各随机抽取10个班的餐厨垃圾质量的数据(单位:kg),进行整理和分析(餐厨垃圾质量用x表示,共分为四个等级:A.,B. ,C. ,D. ),下面给出了部分信息.
七年级10个班的餐厨垃圾质量:0.8,0.8,0.8,0.9,1.1,1.1,1.6,1.7,1.9,2.3.
八年级10个班的餐厨垃圾质量中B等级包含的所有数据为:1.0,1.0,1.0,1.0,1.2.
七八年级抽取的班级餐厨垃圾质量统计表
年级 | 平均数 | 中位数 | 众数 | 方差 | A等级所占百分比 |
七年级 | 1.3 | 1.1 | a | 0.26 | 40% |
八年级 | 1.3 | b | 1.0 | 0.23 | m% |
根据以上信息,解答下列问题:
(1)直接写出上述表中a,b,m的值;
(2)该校八年级共30个班,估计八年级这一天餐厨垃圾质量符合A等级的班级数;
(3)根据以上数据,你认为该校七、八年级的“光盘行动”,哪个年级落实得更好?请说明理由(写出一条理由即可).
19.如图,矩形中为边上一点,将沿AE翻折后,点B恰好落在对角线的中点F上.
(1)证明:;
(2)若,求折痕的长度
20.如图,反比例函数的图象与过点,的直线交于点B和C.
(1)求直线AB和反比例函数的解析式.
(2)已知点,直线CD与反比例函数图象在第一象限的交点为E,直接写出点E的坐标,并求的面积.
21.如图,小明同学在民族广场A处放风筝,风筝位于B处,风筝线AB长为,从A处看风筝的仰角为,小明的父母从C处看风筝的仰角为.
(1)风筝离地面多少m?
(2)AC相距多少m?(结果保留小数点后一位,参考数据:,,,,,)
22.某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.
(1)求甲、乙两种商品每箱各盈利多少元?
(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可以多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?
23.如图,在半径为5cm的中,AB是的直径,CD是过上点C的直线,且于点D,AC平分,E是BC的中点,.
(1)求证:CD是的切线;
(2)求AD的长,
24.【阅读理解】如图①,l1∥l2,△ABC的面积与△DBC的面积相等吗?为什么?
【类比探究】如图②,在正方形ABCD的右侧作等腰△CDE,CE=DE,AD=4,连接AE,求△ADE的面积.
【拓展应用】如图③,在正方形ABCD的右侧作正方形CEFG,点B,C,E在同一直线上,AD=4,连接BD,BF,DF,直接写出△BDF的面积.
25.如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(-1,0),B(4,0)两点,与y轴交于点C(0,-2).
(1)求抛物线的解析式;
(2)连接AC,BC,若点P是抛物线上一点(不与点C重合),且S△ABC=S△ABP,求点P的坐标;
(3)点D为抛物线在第四象限上一点,连接AD,交BC于点E,连接BD,记△BDE的面积为S1,记△BAE的面积为S2,求的最大值.
参考答案:
1.C
2.C
3.D
4.B
5.B
6.C
7.D
8.C
9.B
10.B
11.D
12.B
13.
14..
15.
16.5
17.(1)5;(2),
18.(1);(2)6个;(3)见解析
19.(1)证明见解析;(2)
20.(1)直线AB:;反比例函数:;(2),
21.(1)50;(2)128.6
22.(1)甲种商品每箱盈利15元,则乙种商品每箱盈利10元;(2)当降价5元时,该商场利润最大,最大利润是2000元.
23.(1)证明见解析;(2).
24.【阅读理解】相等,理由见解析;【类比探究】4;【拓展应用】8
25.(1)y=x2-x-2
(2)(3,-2)或(,2)或(,2)
(3)
2022年贵州省贵阳市中考数学模拟卷(word版含答案): 这是一份2022年贵州省贵阳市中考数学模拟卷(word版含答案),共25页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2022年贵州省贵阳市中考数学模拟试卷(十)(word版含答案): 这是一份2022年贵州省贵阳市中考数学模拟试卷(十)(word版含答案),共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年贵州省贵阳市中考数学模拟试题(word版含答案): 这是一份2022年贵州省贵阳市中考数学模拟试题(word版含答案),共27页。