阿氏圆题型的解题方法和技巧
展开
阿氏圆题型的解题方法和技巧
以阿氏圆(阿波罗尼斯圆)为背景的几何问题近年来在中考数学中经常出现,对于此类问题的归纳和剖析显得非常重要.
具体内容如下:
阿氏圆定理(全称:阿波罗尼斯圆定理),具体的描述:一动点P到两定点A、B的距离之比等于定比(≠1),则P点的轨迹,是以定比内分和外分定线段AB的两个分点的连线为直径的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,该圆称为阿波罗尼斯圆,简称阿氏圆.
定理读起来和理解起来比较枯燥,阿氏圆题型也就是大家经常见到的PA+kPB,(k≠1)P点的运动轨迹是圆或者圆弧的题型.
PA+kPB,(k≠1)P点的运动轨迹是圆或圆弧的题型
阿氏圆基本解法:构造母子三角形相似
【问题】在平面直角坐标系xOy中,在x轴、y轴分别有点C(m,0),D(0,n).点P是平面内一动点,且OP=r,求PC+kPD的最小值.
阿氏圆一般解题步骤:
第一步:确定动点的运动轨迹(圆),以点O为圆心、r为半径画圆;(若圆已经画出则可省略这一步)
第二步:连接动点至圆心O(将系数不为1的线段的固定端点与圆心相连接),即连接OP、OD;
第三步:计算出所连接的这两条线段OP、OD长度;
第四步:计算这两条线段长度的比k;
第五步:在OD上取点M,使得OM:OP=OP:OD=k;
第六步:连接CM,与圆O交点即为点P.此时CM即所求的最小值.
【补充:若能直接构造△相似计算的,直接计算,不能直接构造△相似计算的,先把k提到括号外边,将其中一条线段的系数化成,再构造△相似进行计算】
【旋转隐圆】如图,在Rt△ABC中,∠ACB=90°,D为AC的中点,M为BD的中点,将线段AD绕A点任意旋转(旋转过程中始终保持点M为BD的中点),若AC=4,BC=3,那么在旋转过程中,线段CM长度的取值范围是___________.
1.Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D为△ABC内一动点,满足CD=2,则AD+BD的最小值为_______.
2.如图,菱形ABCD的边长为2,锐角大小为60°,⊙A与BC相切于点E,在⊙A上任取一点P,则PB+PD的最小值为________.
3.如图,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,P为圆B上一动点,则PD+PC的最小值为_________.
4.如图,点A,B在⊙O上,OA=OB=12,OA⊥OB,点C是OA的中点,点D在OB上,OD=10.动点P在⊙O上,则PC+PD的最小值为_______.
5.如图,等边△ABC的边长为6,内切圆记为⊙O,P是圆上动点,求2PB+PC的最小值为_______.
6.如图,边长为4的正方形,内切圆记为⊙O,P是圆上的动点,求PA+PB的最小值_______.
7.如图,边长为4的正方形,点P是正方形内部任意一点,且BP=2,则PD+PC的最小值为______;PD+4PC的最小值为______.
8.在平面直角坐标系xOy中,A(2,0),B(0,2),C(4,0),D(3,2),P是△AOB外部的第一象限内一动点,且∠BPA=135°,则2PD+PC的最小值是_______.
(第9题图)
9.在△ABC中,AB=9,BC=8,∠ABC=60°,⊙A的半径为6,P是⊙A上的动点,连接PB、PC,则3PC+2PB的最小值为_______.
10.如图,在Rt△ABC中,∠A=30°,AC=8,以C为圆心,4为半径作⊙C.
(1)试判断⊙C与AB的位置关系,并说明理由;
(2)点F是⊙C上一动点,点D在AC上且CD=2,试说明△FCD~△ACF;
(3)点E是AB上任意一点,在(2)的情况下,试求出EF+FA的最小值.
11.(1)如图1,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD+PC的最小值和PD-PC的最大值;
(2)如图2,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+PC的最小值为______,PD-PC的最大值为______.
(3)如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,那么PD+PC的最小值为______,PD-PC的最大值为________.
【二次函数结合阿氏圆题型】
13.如图1,抛物线y=ax²+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.
(1)求a的值和直线AB的函数表达式;
(2)设△PMN的周长为C1,△AEN的周长为C2,若,求m的值;
(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.
问题背景:如图1,在△ABC中,BC=4,AB=2AC.
问题初探:请写出任意一对满足条件的AB与AC的值:AB=_____,AC=_______.
问题再探:如图2,在AC右侧作∠CAD=∠B,交BC的延长线于点D,求CD的长.
问题解决:求△ABC的面积的最大值.
专题2-5 最值模型之阿氏圆与胡不归 备考2024年中考数学—模型·方法·技巧专题突破(全国通用): 这是一份专题2-5 最值模型之阿氏圆与胡不归 备考2024年中考数学—模型·方法·技巧专题突破(全国通用),文件包含专题2-5最值模型之阿氏圆与胡不归原卷版docx、专题2-5最值模型之阿氏圆与胡不归解析版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。
模型17 阿氏圆最值问题(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用): 这是一份模型17 阿氏圆最值问题(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用),文件包含模型17阿氏圆最值问题原卷版docx、模型17阿氏圆最值问题解析版docx等2份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。
中考数学压轴专题 圆中的最值模型之阿氏圆模型: 这是一份中考数学压轴专题 圆中的最值模型之阿氏圆模型,共11页。