2022年中考数学二轮压轴题复习:二次函数的应用
展开(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?
2.(2021雅安)某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现,每天销售量y(瓶)与每瓶售价x(元)之间存在一次函数关系(其中10≤x≤21,且x为整数).当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶.
(1)求y与x之间的函数关系式;
(2)设该药店销售该消毒液每天的销售利润为w元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大,最大利润是多少元?
3.(2021鄂尔多斯)鄂尔多斯市某宾馆共有50个房间供游客居住,每间房价不低于200元且不超过320元、如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.已知每个房间定价x(元)和游客居住房间数y(间)符合一次函数关系,如图是y关于x的函数图象.
(1)求y与x之间的函数解析式,并写出自变量x的取值范围;
(2)当房价定为多少元时,宾馆利润最大?最大利润是多少元?
4.某商家正在热销一种商品,其成本为30元/件,在销售过程中发现随着售价增加,销售量在减少.商家决定当售价为60元/件时,改变销售策略,此时售价每增加1元需支付由此产生的额外费用150元.该商品销售量y(件)与售价x(元/件)满足如图所示的函数关系(其中40≤x≤70,且x为整数).
(1)直接写出y与x的函数关系式;
(2)当售价为多少时,商家所获利润最大,最大利润是多少?
5.(2021湖北武汉)在“乡村振兴”行动中,某村办企业以A,B两种农作物为原料开发了一种有机产品.A原料的单价是B原料单价的1.5倍,若用900元收购A原料会比用900元收购B原料少100kg.生产该产品每盒需要A原料2kg和B原料4kg,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.
(1)求每盒产品的成本(成本=原料费+其他成本);
(2)设每盒产品的售价是x元(x是整数),每天的利润是w元,求w关于x的函数解析式(不需要写出自变量的取值范围);
(3)若每盒产品的售价不超过a元(a是大于60的常数,且是整数),直接写出每天的最大利润.
6.(2021湖北十堰)某商贸公司购进某种商品的成本为20元/kg,经过市场调研发现,这种商品在未来40天的销售单价y(元/kg)与时间x(天)之间的函数关系式为:y=,且日销量m(kg)与时间x(天)之间的变化规律符合一次函数关系,如下表:
(1)填空:m与x的函数关系为 、 ;
(2)哪一天的销售利润最大?最大日销售利润是多少?
(3)在实际销售的前20天中,公司决定每销售1kg商品就捐赠n元利润(n<4)给当地福利院,后发现:在前20天中,每天扣除捐赠后的日销售利润随时间x的增大而增大,求n的取值范围.
7.(2021湖北仙桃)去年“抗疫”期间,某生产消毒液厂家响应政府号召,将成本价为6元/件的简装消毒液低价销售,为此当地政府决定给予其销售的这种消毒液按a元/件进行补贴,设某月销售价为x元/件,a与x之间满足关系式:a=20%(10﹣x),下表是某4个月的销售记录,每月销售量y(万件)与该月销售价x(元/件)之间成一次函数关系(6≤x<9).
(1)求y与x的函数关系式;
(2)当销售价为8元/件时,政府该月应付给厂家补贴多少万元?
(3)当销售价x定为多少时,该月纯收入最大?
(纯收入=销售总金额﹣成本+政府当月补贴)
8.(2021黄冈)红星公司销售一种成本为40元/件产品,若月销售单价不高于50元/件,一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x(单位:元/件),月销售量为y(单位:万件).
(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;
(2)当月销售单价是多少元时,月销售利润最大,最大利润是多少万元?
(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值.
9.(2021荆门)某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,如表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据.
(1)求y关于x的函数解析式(不要求写出自变量的取值范围);
(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;
(3)因疫情期间,该商品进价提高了m(元/件)(m>0),公司为回馈消费者,规定该商品售价x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值.
10.如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A处,另一端固定在离地面高2米的墙体B处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度y(米)与其离墙体A的水平距离x(米)之间的关系满足y=﹣x2+bx+c,现测得A,B两墙体之间的水平距离为6米.
(1)直接写出b,c的值;
(2)求大棚的最高处到地面的距离;
(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为米的竹竿支架若干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共需要准备多少根竹竿?
11.(2021广西南宁)2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点A作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=﹣x2+x+1近似表示滑雪场地上的一座小山坡,某运动员从点O正上方4米处的A点滑出,滑出后沿一段抛物线C2:y=﹣x2+bx+c运动.
(1)当运动员运动到离A处的水平距离为4米时,离水平线的高度为8米,求抛物线C2的函数解析式(不要求写出自变量x的取值范围);
(2)在(1)的条件下,当运动员运动的水平距离为多少米时,运动员与小山坡的竖直距离为1米?
(3)当运动员运动到坡顶正上方,且与坡顶距离超过3米时,求b的取值范围.
12.某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线一段.已知跳水板AB长为2m,跳水板距水面CD的高BC为3m.为安全和空中姿态优美,训练时跳水曲线应在离起跳点A处水平距hm(h≥1)时达到距水面最大高度4m.规定:以CD为横轴,BC为纵轴建立直角坐标系.
(1)当h=1时,求跳水曲线所在的抛物线方程;
(2)若跳水运动员在区域EF内入水时才能达到比较好的训练效果,求此时h的取值范围.
13.如图,河上有一座抛物线桥洞,已知桥下的水面离桥拱顶部3m时,水面宽AB为6m,当水位上升0.5m时:
(1)求水面的宽度CD为多少米?
(2)有一艘游船,它的左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在上述河流中航行.
①若游船宽(指船的最大宽度)为2m,从水面到棚顶的高度为1.8m,问这艘游船能否从桥洞下通过?
②若从水面到棚顶的高度为m的游船刚好能从桥洞下通过,则这艘游船的最大宽度是多少米?
14.(2021﹒绍兴)小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,如图1,杯体ACB是抛物线的一部分,抛物线的顶点C在y轴上,杯口直径AB=4,且点A,B关于y轴对称,杯脚高CO=4,杯高DO=8,杯底MN在x轴上.
(1)求杯体ACB所在抛物线的函数表达式(不必写出x的取值范围);
(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯体A′CB′所在抛物线形状不变,杯口直径A′B′∥AB,杯脚高CO不变,杯深CD′与杯高OD′之比为0.6,求A′B′的长.
15.武汉欢乐谷要建一个圆形喷水池,如图所示,计划在喷水池的周边靠近水面的位置安装一圆喷水头,时喷出的水柱在离池中心4m处达到最高,高度为6m,另外还要再喷水池的中心设计一个装饰水坛,使各方向喷来的水柱在此汇合,已知装饰水坛的高度为
m.
(1)建立平面直角坐标系,使抛物线水柱最高坐标为(4,6),装饰水坛最高坐标为(0,),求圆形喷水池的半径.
(2)为防止游客戏水出现危险,公园再喷水池内设置了一个六方形隔离网.如图,若该六边形被圆形喷水池的直径AB平分为两个相同的等腰梯形,那么,当该等腰梯形的腰AD长为多少时,该梯形周长最大?
参考答案
2022年中考数学二轮压轴题复习:二次函数的应用
1.(四川遂宁)某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高x元.
(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?
(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?
【分析】(1)设销售单价提高x元,根据题意列出方程求解即可;
(2)设销售利润为M元,求得函数关系式,利用二次函数的性质即可解决问题.
【解答】解:(1)设T恤的销售单价提高x元,
由题意列方程得:(x+40﹣30)(300﹣10x)=3360,
解得:x1=2或x2=18,
∵要尽可能减少库存,
∴x2=18不合题意,应舍去.
∴T恤的销售单价应提高2元,
答:T恤的销售单价应提高2元;
(2)设利润为M元,由题意可得:
M=(x+40﹣30)(300﹣10x),
=﹣10x2+200x+3000,
=﹣10(x﹣10)2+4000,
∴当x=10时,M最大值 =4000元,
∴销售单价:40+10=50(元),
答:当服装店将销售单价定为50元时,得到最大利润是4000元.
【点评】本题考查了二次函数及一元二次方程的应用,解题的关键是利用利润=单件利润×销售量列出二次函数解析式.
2.(2021雅安)某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现,每天销售量y(瓶)与每瓶售价x(元)之间存在一次函数关系(其中10≤x≤21,且x为整数).当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶.
(1)求y与x之间的函数关系式;
(2)设该药店销售该消毒液每天的销售利润为w元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大,最大利润是多少元?
【考点】待定系数法求一次函数解析式;二次函数的应用.
【分析】(1)根据给定的数据,利用待定系数法即可求出y与x之间的函数关系式;
(2)利用销售该消毒液每天的销售利润=每瓶的销售利润×每天的销售量,即可得出w关于x的函数关系式,再利用二次函数的性质即可解决最值问题.
【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),
将(12,90),(15,75)代入y=kx+b,
12k+b=9015k+b=75,解得:k=−5b=150,
∴y与x之间的函数关系式为y=﹣5x+150(10≤x≤21,且x为整数).
(2)依题意得:w=(x﹣10)(﹣5x+150)=﹣5x2+200x﹣1500=﹣5(x﹣20)2+500.
∵﹣5<0,
∴当x=20时,w取得最大值,最大值为500.
答:当每瓶消毒液售价为20元时,药店销售该消毒液每天销售利润最大,最大利润是500元.
3.(2021鄂尔多斯)鄂尔多斯市某宾馆共有50个房间供游客居住,每间房价不低于200元且不超过320元、如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.已知每个房间定价x(元)和游客居住房间数y(间)符合一次函数关系,如图是y关于x的函数图象.
(1)求y与x之间的函数解析式,并写出自变量x的取值范围;
(2)当房价定为多少元时,宾馆利润最大?最大利润是多少元?
【考点】二次函数的应用.
【专题】二次函数的应用;应用意识.
【答案】(1)y与x之间的函数解析式为y=﹣x+68(200≤x≤320);(2)当每间房价定价为320元时,宾馆每天所获利润最大,最大利润是10800元.
【分析】(1)根据图象设y关于x的函数解析式为y=kx+b,然后用待定系数法求函数解析式即可;
(2)根据宾馆利润数=单个房间的利润×游客居住房间数列出二次函数的关系式,再根据二次函数的性质解决问题.
【解答】解:(1)由题意,设y关于x的函数解析式为y=kx+b,
把(280,40,),(290,39)代入得:
,
解得:,
∴y与x之间的函数解析式为y=﹣x+68(200≤x≤320);
(2)设宾馆的利润为w元,
则w=(x﹣20)y=(x﹣20)(﹣x+68)=﹣x2+70x﹣1360=﹣(x﹣350)2+10890,
∵﹣<0,
∴当x<350时,w随x的增大而增大,
∵200≤x≤320,
∴当x=320时,w取得最大值,最大值为10800元,
答:当每间房价定价为320元时,宾馆每天所获利润最大,最大利润是10800元.
4.某商家正在热销一种商品,其成本为30元/件,在销售过程中发现随着售价增加,销售量在减少.商家决定当售价为60元/件时,改变销售策略,此时售价每增加1元需支付由此产生的额外费用150元.该商品销售量y(件)与售价x(元/件)满足如图所示的函数关系(其中40≤x≤70,且x为整数).
(1)直接写出y与x的函数关系式;
(2)当售价为多少时,商家所获利润最大,最大利润是多少?
【分析】(1)先设出一次函数关系式,分40≤x≤60和60<x≤70两种情况用待定系数法分别求出函数解析式即可;
(2)设获得的利润为w元,分①当40≤x≤60时和②当60<x≤70时两种情况分别求出函数解析式,然后根据自变量的取值范围和函数的性质求函数的最大值.
【解答】解:(1)设线段AB的表达式为:y=kx+b(40≤x≤60),
将点(40,300)、(60,100)代入上式得:
,
解得:,
∴函数的表达式为:y=﹣10x+700(40≤x≤60),
设线段BC的表达式为:y=mx+n(60<x≤70),
将点(60,100)、(70,150)代入上式得:
,
解得:,
∴函数的表达式为:y=5x﹣200(60<x≤70),
∴y与x的函数关系式为:y=;
(2)设获得的利润为w元,
①当40≤x≤60时,w=(x﹣30)(﹣10x+700)=﹣10(x﹣50)2+4000,
∵﹣10<0,
∴当x=50时,w有值最大,最大值为4000元;
②当60<x≤70时,w=(x﹣30)(5x﹣200)﹣150(x﹣60)=5(x﹣50)2+2500,
∵5>0,
∴当60<x≤70时,w随x的增大而增大,
∴当x=70时,w有最大,最大值为:5(70﹣50)2+2500=4500(元),
综上,当售价为70元时,该商家获得的利润最大,最大利润为4500元.
5.(2021湖北武汉)在“乡村振兴”行动中,某村办企业以A,B两种农作物为原料开发了一种有机产品.A原料的单价是B原料单价的1.5倍,若用900元收购A原料会比用900元收购B原料少100kg.生产该产品每盒需要A原料2kg和B原料4kg,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.
(1)求每盒产品的成本(成本=原料费+其他成本);
(2)设每盒产品的售价是x元(x是整数),每天的利润是w元,求w关于x的函数解析式(不需要写出自变量的取值范围);
(3)若每盒产品的售价不超过a元(a是大于60的常数,且是整数),直接写出每天的最大利润.
【分析】(1)根据题意列方程先求出两种原料的单价,再根据成本=原料费+其他成本计算每盒产品的成本即可;
(2)根据利润等于售价减去成本列出函数关系式即可;
(3)根据(2)中的函数关系式,利用函数的性质求最值即可.
【解答】解:(1)设B原料单价为m元,则A原料单价为1.5m元,
根据题意,得﹣=100,
解得m=3,
经检验m=3是方程的解,
∴1.5m=4.5,
∴每盒产品的成本是:4.5×2+4×3+9=30(元),
答:每盒产品的成本为30元;
(2)根据题意,得w=(x﹣30)[500﹣10(x﹣60)]=﹣10x2+1400x﹣33000,
∴w关于x的函数解析式为:w=﹣10x2+1400x﹣33000;
(3)由(2)知w=﹣10x2+1400x﹣33000=﹣10(x﹣70)2+16000,
∴当a≥70时,每天最大利润为16000元,
当60<a<70时,每天的最大利润为(﹣10a2+1400a﹣33000)元.
【点评】本题主要考查二次函数的性质和分式方程,熟练应用二次函数求最值是解题的关键.
6.(2021湖北十堰)某商贸公司购进某种商品的成本为20元/kg,经过市场调研发现,这种商品在未来40天的销售单价y(元/kg)与时间x(天)之间的函数关系式为:y=,且日销量m(kg)与时间x(天)之间的变化规律符合一次函数关系,如下表:
(1)填空:m与x的函数关系为 m═﹣2x+144(1≤x≤40且x为整数) ;
(2)哪一天的销售利润最大?最大日销售利润是多少?
(3)在实际销售的前20天中,公司决定每销售1kg商品就捐赠n元利润(n<4)给当地福利院,后发现:在前20天中,每天扣除捐赠后的日销售利润随时间x的增大而增大,求n的取值范围.
【分析】(1)根据题意建立一次函数模型,利用待定系数法求解即可;
(2)根据题意找到等量关系式:日销售利润═(销售单价﹣单件成本)×销售量,列出方程,再分情况进行讨论总结即可;
(3)根据题意列出方程,根据二次函数的图像与性质进行求解即可.
【解答】解:(1)由题意可设日销量m(kg)与时间x(天)之间的一次函数关系式为:m═kx+b(k≠0),
将(1,142)和(3,138)代入m═kx+b,有:,
解得k═﹣2,b═144,
故m与x的函数关系为:m═﹣2x+144(1≤x≤40且x为整数);
(2)设日销售利润为W元,根据题意可得:
当1≤x≤20且x为整数时,W═(0.25x+30﹣20)(﹣2x+144)═﹣0.5x2+16x+1440═﹣0.5(x﹣16)2+1568,
此时当x═16时,取得最大日销售利润为1568元,
当20<x≤40且x为整数时,W═(35﹣20)(﹣2x+144)═﹣30x+2160,
此时当x═21时,取得最大日销售利润W═﹣30×21+2160═1530(元),
综上所述,第16天的销售利润最大,最大日销售利润为1568元;
(3)设每天扣除捐赠后的日销售利润为P,根据题意可得:
P═﹣0.5x2+16x+1440﹣n(﹣2x+144)═﹣0.5x2+(16+2n)x+1440﹣144n,其对称轴为直线x═16+2n,
∵在前20天中,每天扣除捐赠后的日销售利润随时间x的增大而增大,且x只能取整数,故只要第20天的利润高于第19天,即对称轴要大于19.5
∴16+2n>19.5,求得n>1.75,
又∵n<4,
∴n的取值范围是:1.75<n<4,
答:n的取值范围是1.75<n<4.
【点评】本题考查二次函数的应用,解此类型题目首先要根据题意找到等量关系式,列出方程,再结合实际和二次函数的图像与性质进行逐步的分析.
7.(2021湖北仙桃)去年“抗疫”期间,某生产消毒液厂家响应政府号召,将成本价为6元/件的简装消毒液低价销售,为此当地政府决定给予其销售的这种消毒液按a元/件进行补贴,设某月销售价为x元/件,a与x之间满足关系式:a=20%(10﹣x),下表是某4个月的销售记录,每月销售量y(万件)与该月销售价x(元/件)之间成一次函数关系(6≤x<9).
(1)求y与x的函数关系式;
(2)当销售价为8元/件时,政府该月应付给厂家补贴多少万元?
(3)当销售价x定为多少时,该月纯收入最大?
(纯收入=销售总金额﹣成本+政府当月补贴)
【分析】(1)设出一次函数解析式,用待定系数法求解析式即可;
(2)先求出x=3时,销售量y的值,再求政府补贴;
(3)纯收入=销售总金额﹣成本+政府当月补贴列出函数解析式,根据二次函数的性质求最值.
【解答】解:(1)∵每月销售量y与该月销售价x之间成一次函数关系,
∴设y与x的函数关系式为:y=kx+b,
则,
解得:,
∴y与x的函数关系式y=﹣10x+90(6≤x<9);
(2)当x=8时,y=﹣10×8+90=10(万元),
∵a与x之间满足关系式:a=20%(10﹣x),
∴当销售价为8元/件时,政府该月应付给厂家补贴为:10a=10×20%(10﹣8)=4(万元),
答:当销售价为8元/件时,政府该月应付给厂家补贴4万元;
(3)设该月的纯收入w万元,
则w=y[(x﹣6)+0.2(10﹣x)]=(﹣10x+90)(0.8x﹣4)=﹣8x2+112x﹣360=﹣8(x﹣7)2+32,
∵﹣8<0,6≤x<9
∴当x=7时,w最大,最大值为32万元,
答:当销售价定为7时,该月纯收入最大.
【点评】本题考查二次函数的应用和待定系数法求函数解析式,关键是根据纯收入=销售总金额﹣成本+政府当月补贴列出函数解析式.
8.(2021黄冈)红星公司销售一种成本为40元/件产品,若月销售单价不高于50元/件,一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x(单位:元/件),月销售量为y(单位:万件).
(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;
(2)当月销售单价是多少元时,月销售利润最大,最大利润是多少万元?
(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值.
【分析】(1)根据题意写出销售量和销售单价之间的关系式即可;
(2)根据销售量和销售单价之间的关系列出销售利润和单价之间的关系式求最值即可;
(3)根据(2)中的函数和月销售单价不高于70元/件的取值范围,确定a值即可.
【解答】解:(1)由题知,①当40≤x≤50时,y=5,
②当50<x≤100时,y=5﹣(x﹣50)×0.1=10﹣0.1x,
∴y与x之间的函数关系式为:;
(2)设月销售利润为z,由题知,
①当40≤x≤50时,x=50时利润最大,
此时z=(50﹣40)×5=50(万元),
②当50<x≤100时,z=(x﹣40)y=(x﹣40)(10﹣0.1x)=﹣0.1x2+14x﹣400=﹣0.1(x﹣70)2+90,
∴当x=70时,z有最大值为90万元,
即当月销售单价是70元时,月销售利润最大,最大利润是90万元;
(3)由题知,利润z=(x﹣40﹣a)(10﹣0.1x)=﹣0.1x2+(14+0.1a)x﹣400﹣10a,
此函数的对称轴为:直线x=﹣=70+0.5a>70,
∴当月销售单价是70元时,月销售利润最大,
即(70﹣40﹣a)×(10﹣0.1×70)=78,
解得a=4,
∴a的值为4.
【点评】本题主要考查一次函数性质和二次函数的性质及方程的应用,熟练应用二次函数求最值是解题的关键.
9.(2021荆门)某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,如表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据.
(1)求y关于x的函数解析式(不要求写出自变量的取值范围);
(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;
(3)因疫情期间,该商品进价提高了m(元/件)(m>0),公司为回馈消费者,规定该商品售价x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值.
【分析】(1)设y=kx+b,把x=40,y=180和x=70,y=90,代入可得解析式.
(2)根据利润=(售价﹣进价)×数量,得W=(﹣3x+300)(x﹣a),把x=40,W=3600,代入上式可得关系式W=﹣3(x﹣60)2+4800,顶点的纵坐标是有最大值.
(3)根据根据利润=(售价﹣进价)×数量,得W=﹣3(x﹣100)(x﹣20﹣m)(x≤55),其对称轴x=60+>60,0<x≤55时,函数单调递增,只有x=55时周销售利润最大,即可得m=5.
【解答】解:(1)设y=kx+b,由题意有:
,
解得,
所以y关于x的函数解析式为y=﹣3x+300;
(2)由(1)W=(﹣3x+300)(x﹣a),
又由表知,把x=40,W=3600,代入上式可得关系式
得:3600=(﹣3×40+300)(40﹣a),
∴a=20,
∴W=(﹣3x+300)(x﹣20)=﹣3x2+360x﹣6000=﹣3(x﹣60)2+4800,
所以售价x=60时,周销售利润W最大,最大利润为4800;
(3)由题意W=﹣3(x﹣100)(x﹣20﹣m)(x≤55),
其对称轴x=60+>60,
∴0<x≤55时,W的值随x增大而增大,
∴只有x=55时周销售利润最大,
∴4050=﹣3(55﹣100)(55﹣20﹣m),
∴m=5.
【点评】本题考查二次函数的应用,解本题的关键理解题意,掌握二次函数的性质和销售问题中利润公式,
10.如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A处,另一端固定在离地面高2米的墙体B处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度y(米)与其离墙体A的水平距离x(米)之间的关系满足y=﹣x2+bx+c,现测得A,B两墙体之间的水平距离为6米.
(1)直接写出b,c的值;
(2)求大棚的最高处到地面的距离;
(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为米的竹竿支架若干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共需要准备多少根竹竿?
【分析】(1)根据题意可推出点A坐标为(0,1),点B坐标为(6,2),将这两点坐标代入二次函数表达式即可求得b、c的值;
(2)将二次函数一般式化为顶点式,即可求得大棚的最高点;
(3)先求出大棚内可以搭建支架土地的宽,再求需要搭建支架部分的面积,进而求得需要准备的竹竿.
【解答】解:(1)b═,c═1.
(2)由y══,
可知当x═时,y有最大值,
故大棚最高处到地面的距离为米;
(3)令y═,则有═,
解得x1═,x2═,
又∵0≤x≤6,
∴大棚内可以搭建支架的土地的宽为6﹣═(米),
又大棚的长为16米,
∴需要搭建支架部分的土地面积为16×═88(平方米),
故共需要88×4═352(根)竹竿,
答:共需要准备352根竹竿.
11.(2021广西南宁)2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点A作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=﹣x2+x+1近似表示滑雪场地上的一座小山坡,某运动员从点O正上方4米处的A点滑出,滑出后沿一段抛物线C2:y=﹣x2+bx+c运动.
(1)当运动员运动到离A处的水平距离为4米时,离水平线的高度为8米,求抛物线C2的函数解析式(不要求写出自变量x的取值范围);
(2)在(1)的条件下,当运动员运动的水平距离为多少米时,运动员与小山坡的竖直距离为1米?
(3)当运动员运动到坡顶正上方,且与坡顶距离超过3米时,求b的取值范围.
【分析】(1)根据题意将点(0,4)和(4,8)代入C2:y=﹣x2+bx+c求出b、c的值即可写出C2的函数解析式;
(2)设运动员运动的水平距离为m米时,运动员与小山坡的竖直距离为1米,依题意得:﹣m2+m+4﹣(﹣m2+m+1)=1,解出m即可;
(3)求出山坡的顶点坐标为(7,),根据题意即﹣×72+7b+4>3+,再解出b的取值范围即可.
【解答】解:(1)由题意可知抛物线C2:y=﹣x2+bx+c过点(0,4)和(4,8),将其代入得:
,解得:,
∴抛物线C2的函数解析式为:y=﹣x2+x+4;
(2)设运动员运动的水平距离为m米时,运动员与小山坡的竖直距离为1米,依题意得:
﹣m2+m+4﹣(﹣m2+m+1)=1,
整理得:(m﹣12)(m+4)=0,
解得:m1=12,m2=﹣4(舍去),
故运动员运动的水平距离为12米时,运动员与小山坡的竖直距离为1米;
(3)C1:y=﹣x2+x+1=﹣(x﹣7)2+,
当x=7时,运动员到达坡顶,
即﹣×72+7b+4>3+,
解得:b>.
【点评】本题考查二次函数的基本性质及其应用,熟练掌握二次函数的基本性质,并能将实际问题与二次函数模型相结合是解决本题的关键.
12.某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线一段.已知跳水板AB长为2m,跳水板距水面CD的高BC为3m.为安全和空中姿态优美,训练时跳水曲线应在离起跳点A处水平距hm(h≥1)时达到距水面最大高度4m.规定:以CD为横轴,BC为纵轴建立直角坐标系.
(1)当h=1时,求跳水曲线所在的抛物线方程;
(2)若跳水运动员在区域EF内入水时才能达到比较好的训练效果,求此时h的取值范围.
13.如图,河上有一座抛物线桥洞,已知桥下的水面离桥拱顶部3m时,水面宽AB为6m,当水位上升0.5m时:
(1)求水面的宽度CD为多少米?
(2)有一艘游船,它的左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在上述河流中航行.
①若游船宽(指船的最大宽度)为2m,从水面到棚顶的高度为1.8m,问这艘游船能否从桥洞下通过?
②若从水面到棚顶的高度为m的游船刚好能从桥洞下通过,则这艘游船的最大宽度是多少米?
14.(2021﹒绍兴)小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,如图1,杯体ACB是抛物线的一部分,抛物线的顶点C在y轴上,杯口直径AB=4,且点A,B关于y轴对称,杯脚高CO=4,杯高DO=8,杯底MN在x轴上.
(1)求杯体ACB所在抛物线的函数表达式(不必写出x的取值范围);
(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯体A′CB′所在抛物线形状不变,杯口直径A′B′∥AB,杯脚高CO不变,杯深CD′与杯高OD′之比为0.6,求A′B′的长.
【分析】(1)运用待定系数法,由题意设顶点式y=ax2+4,进而求得答案;
(2)由题意知:=0.6,进而求得OD′=10,再由题意得抛物线y=x2+4过B′(x1,10),A′(x2,10),从而列方程求出x1 和x2,进而求得A′B′的长.
【解答】解:(1)∵CO=4,
∴顶点C(0,4),
∴设抛物线的函数表达式为y=ax2+4,
∵AB=4,
∴AD=DB=2,
∵DO=8,
∴A(﹣2,8),B(2,8),
将B(2,8)代入y=ax2+4,
得:8=a×22+4,
解得:a=1,
∴该抛物线的函数表达式为y=x2+4;
(2)由题意得:=0.6,CO=4,
∴=0.6,
∴CD′=6,
∴OD′=OC+CD′=4+6=10,
又∵杯体A′CB′所在抛物线形状不变,杯口直径A′B′∥AB,
∴设B′(x1,10),A′(x2,10),
∴当y=10时,10=x2+4,
解得:x1=,x2=﹣,
∴A′B′=2,
∴杯口直径A′B′的长为2.
【点评】本题是关于二次函数应用题,主要考查了二次函数图象和性质,待定系数法,熟练掌握用待定系数法求解函数表达式是解题的关键.
15.武汉欢乐谷要建一个圆形喷水池,如图所示,计划在喷水池的周边靠近水面的位置安装一圆喷水头,时喷出的水柱在离池中心4m处达到最高,高度为6m,另外还要再喷水池的中心设计一个装饰水坛,使各方向喷来的水柱在此汇合,已知装饰水坛的高度为
m.
(1)建立平面直角坐标系,使抛物线水柱最高坐标为(4,6),装饰水坛最高坐标为(0,),求圆形喷水池的半径.
(2)为防止游客戏水出现危险,公园再喷水池内设置了一个六方形隔离网.如图,若该六边形被圆形喷水池的直径AB平分为两个相同的等腰梯形,那么,当该等腰梯形的腰AD长为多少时,该梯形周长最大?
时间x(天)
1
3
6
10
…
日销量m(kg)
142
138
132
124
…
月份
…
二月
三月
四月
五月
…
销售价
x(元/件)
…
6
7
7.6
8.5
…
该月销售量
y(万件)
…
30
20
14
5
…
x
40
70
90
y
180
90
30
W
3600
4500
2100
时间x(天)
1
3
6
10
…
日销量m(kg)
142
138
132
124
…
月份
…
二月
三月
四月
五月
…
销售价
x(元/件)
…
6
7
7.6
8.5
…
该月销售量
y(万件)
…
30
20
14
5
…
x
40
70
90
y
180
90
30
W
3600
4500
2100
考点:
根据实际问题选择函数类型.
专题:
计算题;函数的性质及应用.
分析:
(1)由题意知最高点为(2+h,4),h≥1.设抛物线方程为y=a[x﹣(2+h)]2+4,当h=1时,最高点为(3,4),方程为y=a(x﹣3)2+4,由此能求出结果.
(2)将点A(2,3)代入y=a[x﹣(2+h)]2+4,得ah2=﹣1,由题意,方程a[x﹣(2+h)]2+4=0在区间[5,6]内有一解,由此入手能求出达到较好的训练效果时h的取值范围.
解答:
解:(1)由题意知最高点为(2+h,4),h≥1.
设抛物线方程为y=a[x﹣(2+h)]2+4,
当h=1时,最高点为(3,4),方程为y=a(x﹣3)2+4,
将A(2,3)代入,得3=a(2﹣3)2+4,
解得a=﹣1,
∴当h=1时,跳水曲线所在的抛物线方程为y=﹣(x﹣3)2+4.
(2)将点A(2,3)代入y=a[x﹣(2+h)]2+4,
得ah2=﹣1,①
由题意,方程a[x﹣(2+h)]2+4=0在区间[5,6]内有一解,
令f(x)=a[x﹣(2+h)]2+4=﹣[x﹣(2+h)]2+4,
则f(5)=﹣(3﹣h)2+4≥0,且f(6)=﹣(4﹣h)2+4≤0.
解得1≤h≤.
故达到较好的训练效果时h的取值范围是[1,].
点评:
本题考查抛物线方程的求法,考查满足条件的实数的取值范围的求法,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.
考点:
二次函数的应用.
专题:
压轴题.
分析:
(1)根据二次函数的对称性,CD=C点横坐标的两倍,由C点纵坐标为0.5所以需先求解析式后再求对应的横坐标;
(2)若船宽2米,根据对称性,对应图象上的点的横坐标为1,代入关系式求纵坐标即为距离水面的高度,与1.8比较后得出结论;由题意知最大宽度为第一象限对应点的横坐标的2倍.
解答:
解:(1)设抛物线形桥洞的函数关系式为y=ax2+c,
∵点A(3,0)和E(0,3)在函数图象上
∴
∴
∴
由题意可知,点C和点D的纵坐标为0.5
∴
∴,
∴CD=+=(米);
(2)①当x=1时,
∵
∴这艘游船能从桥洞下通过
②当时,,(不合题意,舍去).
∴这艘游船的最大宽度是3米.
点评:
根据图象的对称性解题是本题的核心.
考点:
二次函数的应用.
分析:
(1)根据已知得出二次函数的顶点坐标,即可利用顶点式得出二次函数解析式,令y=0,则﹣(x﹣4)2+6=0,求出x的值即可得出答案.
(2)连接OD,则三角形AOD是等边三角形,由题意可知当六边形的六个顶点都在圆上时,则梯形周长最大,计算即可.
解答:
解:(1)设抛物线的解析式为:y=a(x﹣h)2+k,
由题意可知:h=4,k=6,
∴y=a(x﹣4)2+6,
∵装饰水坛最高坐标为(0,),
∴当x=0时,y=,
代入得:=16a+6,
解得:a=﹣,
∴y=﹣(x﹣4)2+6,
令y=0,则﹣(x﹣4)2+6=0,
解得:x=10或﹣2(舍),
∴圆形喷水池的半径为10米;
(2)连接OD,则三角形AOD是等边三角形,由题意可知当六边形的六个顶点都在圆上时,则梯形周长最大,
∵AD=OD=AO=10米,
∴梯形ADCB的周长为10+10+10+20=50米,
∴该等腰梯形的腰AD长为10米时,该梯形周长最大为50米.
点评:
此题主要考查了二次函数的实际应用,根据实际问题运用二次函数最大值求二次函数解析式,此题为数学建模题,借助二次函数解决实际问题.
压轴题04二次函数的应用大题专练(七大类型)-2023年中考数学压轴题专项训练(全国通用): 这是一份压轴题04二次函数的应用大题专练(七大类型)-2023年中考数学压轴题专项训练(全国通用),文件包含压轴题04二次函数的应用大题专练七大类型-2023年中考数学压轴题专项训练全国通用解析版docx、压轴题04二次函数的应用大题专练七大类型-2023年中考数学压轴题专项训练全国通用原卷版docx等2份试卷配套教学资源,其中试卷共88页, 欢迎下载使用。
2023年中考数学压轴题专项训练 压轴题04二次函数的应用大题专练(试题+答案): 这是一份2023年中考数学压轴题专项训练 压轴题04二次函数的应用大题专练(试题+答案),文件包含2023年中考数学压轴题专项训练压轴题04二次函数的应用大题专练答案docx、2023年中考数学压轴题专项训练压轴题04二次函数的应用大题专练试题docx等2份试卷配套教学资源,其中试卷共67页, 欢迎下载使用。
中考数学二轮复习函数试题压轴题《几何问题》: 这是一份中考数学二轮复习函数试题压轴题《几何问题》,共13页。