北师大版六年级下册神奇的莫比乌斯带教案
展开
这是一份北师大版六年级下册神奇的莫比乌斯带教案,共5页。教案主要包含了视点导入——谈话导入,视点揭示,视点强化,视点延伸,视点回归等内容,欢迎下载使用。
项 目
教案内容
课 题
神奇的莫比乌斯带
课 时
1课时
教学目标
1.知识与技能:学会将长方形纸条制成莫比乌斯带,初步体会莫比乌斯带的特征。
2.数学思考:经历和探索莫比乌斯带等分后的样子,寻找规律。
3.解决问题:通过操作发现并验证莫比乌斯带的特征,培养学生科学探究精神。
4.情感与态度:在“神奇的纸环”魔术般的变化中感受数学的无穷魅力,在生活应用中体会数学与生活的联系,拓展数学视野。
教学内容
1.知识点:莫比乌斯带的特点
2.相关知识:无
3.相关技能:探索能力
4.审美点或者审美词:拓扑学
教学重难点
教学重点:莫比乌斯带的做法及它的特点。
教学难点:探究莫比乌斯带剪开后的规律。
教学材料
1.典型材料:莫比乌斯带
2.延伸材料:生活中莫比乌斯带的运用
3.检测材料:
4.教具:纸条,剪刀
5.设备仪器:投影仪
教学过程
及方法
一、视点导入——谈话导入
师:同学们,这节课我们要研究什么吗?
生:神奇的莫比乌斯带
师:你们怎么知道的?
生:屏幕上有课题
师:你们可真会观察.那么看了这个课题,你们有什么想法吗?
生1:莫比乌斯带是什么样子的?
生2:莫比乌斯带有什么神奇的地方?
生3:莫比乌斯带在生活中有哪些应用?
师:同学们想知道的还真不少,要想知道这些问题还得从这张小小的纸条说起。
二、视点揭示
1.长方形纸条特点
师:(出示一张白纸条)请拿出这样的白纸条.这个纸条有几条边,几个面?
生:(齐)四条边,两个面.
师:一个正面,一个反面(边说边比,学生也随着说)我会变魔术,能把他变成只有两条边,两个面.
2.纸圈(1号纸条)
师:(教师把纸条变成圈),是不是有两条边,两个面(边问边比).
生:是
师:你会吗?
生:会(学生都做了纸圈)。
师:其实这也没什么神奇的呀!神奇的地方在这里:我能把它变成一个面,一条边.看,我变出来了是这样的。
3. 制作莫比乌斯带
(做纸圈)师:这是怎么做出来的?你们能做吗?同学之间可以互相帮助.这位同学做出来了,说说你是怎么做出来的?(上台演示)
师:好,请看,先把它做成一个普通的纸圈,然后将一段翻转180度,再把它粘好.(学生跟着一起做)。
4.验证特点
师:刚才我说它只有一个面,(那么它是不是一个面呢?)我们一起来动手验证一下。那么,如何验证呢?
生:用笔在纸圈中间画一条线,作为它的起点,笔尖不离开纸面一直画一圈。
【在纸环上取一点,从这一点开始涂色,不能翻过边缘一直涂下去,结果又回到了起点,这个活动是让学生体会“这个神奇的纸环单侧只有一个曲面”的特征。】
生:又回来了。
师:说明了什么?
生:它只有一个面。
师:我们用手指沿着纸圈的边走一圈,你又发现了什么?(同学们真的很会观察发现)
师:这样一个有点奇怪的纸圈叫什么名字呢?
生:莫比乌斯带
师:为什么?你怎么知道的?那么莫比乌斯带有什么特点呢?
5.总结特点
小结:一条边,一个面(单侧曲面)。
三、视点强化
1.沿1/2 剪
师:莫比乌斯带诞生以后,引起了很多人的关注,有人就想,如果沿着纸圈的中线剪开,会是什么样子的呢?同学们,让我们来猜一猜。(猜测)
生1:它会变成两个圈。
生2:
师:要想知道它到底会变成什么样子的,我们该怎样做?
生:剪剪看。(验证)
师:为了不把它剪断,先看老师是怎样开始剪的?(强调怎样剪)注意安全。
请拿出2号纸条。
师:剪完的同学举起来给大家看一看,太不可思议了!怎么会变成这个样子呢?
生:(因为莫比乌斯带是扭了180度才粘在一起的,所以剪开后好像伸开了一样,是一个连着的大圈).
师:分析得很合理,那么这个大圈是不是莫比乌斯带呢?我们来验证一下吧。 (沿着大圈的中线用笔一直画,看看是每个面画上了)
生:我发现一笔画完后,并不是每一个面都画上了,所以它不是莫比乌斯带。
师:确实是这样的,它有两个面,不是莫比乌斯带。
2.沿1/3 剪
师:莫比乌斯带的神奇还远远不止这些,让我们继续体会。
请拿出3号纸条,把它做成莫比乌斯带。
师:这个莫比乌斯.带的面被平均分成三等分,我们可以沿着等分线剪下去,会有怎样的结果呢?猜剪 汇报
生:一个大圈套着一个小圈。
师:验证一下,这两个圈是不是莫比乌斯带?怎么会变成这样?
生:中间涂色的部分变成了这个小圈,两边沿涂色的部分,剪完后连在一起,变成了这个大圈。
师:你们赞成他的说法吗?你们可真会探索、发现。
3.小组合作
师:刚才我们研究了莫比乌斯带的2等分和3等分的线剪开后的情况,感受到了莫比乌斯的神奇.那么,如果一直这样等分的剪下去,会不会有什么规律的?想不想试一试?
4各组分别探究平均分成4等分,5等分,6等分,7等分的莫比乌斯带剪成的样子。
要求:同桌合作,一人剪,一人记录;完成后,在小组内交流你们的结果是否一致。
请每个小组派一组同学汇报结果。(中途可让学生进行猜测)
2等分 1大 否
3等分 1大 否 1小 是
4等分 2大 否
5等分 2大 否 1小 是
6等分 3大 否
7等分 7大 否 1小 是
师:你有什么发现?
四、视点延伸
莫比乌斯带这么好玩有趣,是谁发现的它呢?我们一起来看看。这是德国数学家莫比乌斯1858年发现的,所以以他的姓命名为“莫比乌斯带”,也有人叫它莫比乌斯圈。它属于我们数学中的一门学科拓扑学,有兴趣的孩子可以下来研究。
莫比乌斯带循环反复的特征,蕴含着永恒、无限的意义。被应用到生活的方方面面(出示图片)。
可回收物标志就表示可循环使用的意思。
传送带、传输带如果设计成莫比乌斯带,就不会只磨损一面,从而延长使用寿命。
莫比乌斯爬爬梯,过山车,一些简单的生活用品中。当然不仅仅在我们生活中随处可见,莫比乌斯带也设计成重要的标志,寓意深刻。
中国科技馆的“三叶扭结”雕塑就是莫比乌斯带,象征科学没有国界,各种科学之间相互连通。
2007年夏季特奥会会标“眼神”为主题的纪念雕塑。“眼神”代表期盼、关爱、关心。
理念是“转换一种思维方式,你将获得无限发展”。
2007年世界特殊奥林匹克的主火炬就是莫比乌斯带,象征着连接全世界智障人士的友谊,彰显出特奥会的理念。
2010年上海世博会湖南馆用莫比乌斯带来展示风土人情,突出湖南元素,体现“天人合一”,“和谐自然”。
有一个物体跟莫比乌斯带非常相似,叫克莱因瓶。这种瓶子没有边,表面不会终结,没有内外之分。
五、视点回归
总结:通过这节课的学习,你知道了什么?
师:其实,莫比乌斯带还有许多的玩法,比如:刚才我们将纸条的一端扭转一个180°,还可以有兴趣的同学可以课下继续探索,研究。
板书设计
神奇的莫比乌斯带
1个面1条边
猜想 验证 发现规律
教学反思
相关教案
这是一份六年级下册数学教案-神奇的莫比乌斯带 |北师大版,共9页。教案主要包含了教材分析,学情分析,教学目标,教学重点,教学难点,活动准备,教学过程等内容,欢迎下载使用。
这是一份北师大版六年级下册数学好玩神奇的莫比乌斯带教案及反思,共5页。
这是一份小学北师大版神奇的莫比乌斯带教案设计,共5页。教案主要包含了导入,认识“莫比乌斯带”,研究莫比乌斯带,生活中应用,课堂总结,拓展延伸等内容,欢迎下载使用。