2022年苏教版中考数学压轴题经典模型教案专题21 旋转模型综合问题
展开【压轴必刷】2022中考数学压轴大题之经典模型培优案
专题21旋转模型综合问题
【例1】.如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.
(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.
①求证:△ABP∽△BCP;
②若PA=3,PC=4,则PB= .
(2)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD相交于P点.如图(2)
①求∠CPD的度数;
②求证:P点为△ABC的费马点.
【例2】.如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.
(1)求证:△AMB≌△ENB;
(2)若AM+BM+CM的值最小,则称点M为△ABC的费马点.若点M为△ABC的费马点,试求此时∠AMB、∠BMC、∠CMA的度数;
(3)小翔受以上启发,得到一个作锐角三角形费马点的简便方法:如图②,分别以△ABC的AB、AC为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M即为△ABC的费马点.试说明这种作法的依据.
【例3】.如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.
(1)若点P是等边三角形三条中线的交点,点P (填是或不是)该三角形的费马点.
(2)如果点P为锐角△ABC的费马点,且∠ABC=60°.求证:△ABP∽△BCP;
(3)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD相交于P点.如图(2)
①求∠CPD的度数;
②求证:P点为△ABC的费马点.
【例4】.【方法呈现】:
(1)已知,点P是正方形ABCD内的一点,连PA、PB、PC.将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图1),设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积;
【实际运用】:
(2)如图2,点P是等腰Rt△ABC内一点,AB=BC,连接PA,PB,PC.若PA=2,PB=4,PC=6,求∠APB的大小;
【拓展延伸】:
(3)如图3,点P是等边△ABC内一点,PA=3,PB=4,PC=5,则△APC的面积是 (直接填答案)
1.如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB.
(1)求点P与点P′之间的距离;
(2)求∠APB的度数.
2.(原题初探)(1)小明在数学作业本中看到有这样一道作业题:如图1,P是正方形ABCD内一点,连结PA,PB,PC现将△PAB绕点B顺时针旋转90°得到的△P′CB,连接PP′.若PA=,PB=3,∠APB=135°,则PC的长为 ,正方形ABCD的边长为 .
(变式猜想)(2)如图2,若点P是等边△ABC内的一点,且PA=3,PB=4,PC=5,请猜想∠APB的度数,并说明理由.
(拓展应用)(3)聪明的小明经过上述两小题的训练后,善于反思的他又提出了如下的问题:
如图3,在四边形ABCD中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,则BD的长度为 .
3.问题:如图1,在等边△ABC内部有一点P,已知PA=3,PB=4,PC=5,求∠APB的度数?
(1)请写出常见四组勾股数: 、 、 、 .
(2)解决方法:通过观察发现PA,PB,PC的长度符合勾股数,但由于PA,PB,PC不在一个三角形中,想法将这些条件集中在一个三角形,于是可将△ABP绕A逆时针旋转60°到△AP′C,此时△ABP≌△ACP',这样利用等边三角形和全等三角形知识,便可求出∠APB= .请写出解题过程.
(3)应用:请你利用(2)题的思路,解答下面的问题:
如图2,在△ABC中,∠CAB=90°,AB=AC,E,F为BC的点,且∠EAF=45°,若BE=m,FC=n,请求出线段EF的长度(用m、n的代数式表示).
4.(1)如图1,点P是等边△ABC内一点,已知PA=3,PB=4,PC=5,求∠APB的度数.
分析:要直接求∠APB的度数显然很困难,注意到条件中的三边长恰好是一组勾股数,因此考虑借助旋转把这三边集中到一个三角形内.
解:如图2,作∠PAD=60°使AD=AP,连接PD,CD,则△PAD是等边三角形.
∴ =AD=AP=3,∠ADP=∠PAD=60°
∵△ABC是等边三角形
∴AC=AB,∠BAC=60°∴∠BAP=
∴△ABP≌△ACD
∴BP=CD=4, =∠ADC
∵在△PCD中,PD=3,PC=5,CD=4,PD2+CD2=PC2
∴∠PDC= °
∴∠APB=∠ADC=∠ADP+∠PDC=60°+90°=150°
(2)如图3,在△ABC中,AB=BC,∠ABC=90°,点P是△ABC内一点,PA=1,PB=2,PC=3,求∠APB的度数.
(3)拓展应用.如图(4),△ABC中,∠ABC=30°,AB=4,BC=5,P是△ABC内部的任意一点,连接PA,PB,PC,则PA+PB+PC的最小值为 .
5.如图1,D、E、F是等边三角形ABC中不共线三点,连接AD、BE、CF,三条线段两两分别相交于D、E、F.已知AF=BD,∠EDF=60°.
(1)证明:EF=DF;
(2)如图2,点M是ED上一点,连接CM,以CM为边向右作△CMG,连接EG.若EG=EC+EM,CM=GM,∠GMC=∠GEC,证明:CG=CM.
(3)如图3,在(2)的条件下,当点M与点D重合时,若CD⊥AD,GD=4,请问在△ACD内部是否存在点P使得P到△ACD三个顶点距离之和最小,若存在请直接写出距离之和的最小值;若不存在,试说明理由.
6.如图①,P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.
(1)如果点P为锐角三角形ABC的费马点,且∠ABC=60°.
①求证:△ABP∽△BCP;
②若PA=3,PC=4,求PB的长.
(2)已知锐角三角形ABC,分别以AB、AC为边向外作正三角形ABE和正三角形ACD,CE和BD相交于P点,连结AP,如图②.
①求∠CPD的度数;
②求证:P点为△ABC的费马点.
7.【问题情境】
如图1,在△ABC中,∠A=120°,AB=AC,BC=5,则△ABC的外接圆的半径值为 .
【问题解决】
如图2,点P为正方形ABCD内一点,且∠BPC=90°,若AB=4,求AP的最小值.
【问题解决】
如图3,正方形ABCD是一个边长为3cm的隔离区域设计图,CE为大门,点E在边BC上,CE=cm,点P是正方形ABCD内设立的一个活动岗哨,到B、E的张角为120°,即∠BPE=120°,点A、D为另两个固定岗哨.现需在隔离区域内部设置一个补水供给点Q,使得Q到A、D、P三个岗哨的距离和最小,试求QA+QD+QP的最小值.(保留根号或结果精确到1cm,参考数据≈1.7,10.52=110.25).
8.问题提出
(1)如图,点M、N是直线l外两点,在直线l上找一点K,使得MK+NK最小.
问题探究
(2)在等边三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB度数的大小.
问题解决
(3)如图,矩形ABCD是某公园的平面图,AB=30米,BC=60米,现需要在对角线BD上修一凉亭E,使得到公园出口A、B,C的距离之和最小.问:是否存在这样的点E?
若存在,请画出点E的位置,并求出EA+EB+EC的和的最小值;若不存在,请说明理由.
9.在平面直角坐标系中,二次函数y=ax2+bx﹣8的图象与x轴交于A、B两点,与y轴交于点C,直线y=kx+(k≠0)经过点A,与抛物线交于另一点R,已知OC=2OA,OB=3OA.
(1)求抛物线与直线的解析式;
(2)如图1,若点P是x轴下方抛物线上一点,过点P做PH⊥AR于点H,过点P做PQ∥x轴交抛物线于点Q,过点P做PH′⊥x轴于点H′,K为直线PH′上一点,且PK=2PQ,点I为第四象限内一点,且在直线PQ上方,连接IP、IQ、IK,记l=PQ,m=IP+IQ+IK,当l取得最大值时,求出点P的坐标,并求出此时m的最小值.
(3)如图2,将点A沿直线AR方向平移13个长度单位到点M,过点M做MN⊥x轴,交抛物线于点N,动点D为x轴上一点,连接MD、DN,再将△MDN沿直线MD翻折为△MDN′(点M、N、D、N′在同一平面内),连接AN、AN′、NN′,当△ANN′为等腰三角形时,请直接写出点D的坐标.
10.(1)如图1,点P是等边△ABC内一点,已知PA=3,PB=4,PC=5,求∠APB的度数.
要直接求∠A的度数显然很困难,注意到条件中的三边长恰好是一组勾股数,因此考虑借助旋转把这三边集中到一个三角形内,如图2,作∠PAD=60°使AD=AP,连接PD,CD,则△PAD是等边三角形.
∴ =AD=AP=3,∠ADP=∠PAD=60°
∵△ABC是等边三角形
∴AC=AB,∠BAC=60°
∴∠BAP=
∴△ABP≌△ACD
∴BP=CD=4, =∠ADC
∵在△PCD中,PD=3,PC=5,CD=4,PD2+CD2=PC2
∴∠PDC= °
∴∠APB=∠ADC=∠ADP+∠PDC=60°+90°=150°
(2)如图3,在△ABC中,AB=BC,∠ABC=90°,点P是△ABC内一点,PA=1,PB=2,PC=3,求∠APB的度数.
11.(1)知识储备
①如图1,已知点P为等边△ABC外接圆的BC上任意一点.求证:PB+PC=PA.
②定义:在△ABC所在平面上存在一点P,使它到三角形三顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离.
(2)知识迁移
①我们有如下探寻△ABC(其中∠A,∠B,∠C均小于120°)的费马点和费马距离的方法:
如图2,在△ABC的外部以BC为边长作等边△BCD及其外接圆,根据(1)的结论,易知线段 的长度即为△ABC的费马距离.
②在图3中,用不同于图2的方法作出△ABC的费马点P(要求尺规作图).
(3)知识应用
①判断题(正确的打√,错误的打×):
ⅰ.任意三角形的费马点有且只有一个 ;
ⅱ.任意三角形的费马点一定在三角形的内部 .
②已知正方形ABCD,P是正方形内部一点,且PA+PB+PC的最小值为,求正方形ABCD的
边长.
12.背景资料:
在已知△ABC所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.
这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.
如图①,当△ABC三个内角均小于120°时,费马点P在△ABC内部,此时∠APB=∠BPC=∠CPA=120°,此时,PA+PB+PC的值最小.
解决问题:
(1)如图②,等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数.
为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP,这样就可以利用旋转变换,将三条线段PA,PB,PC转化到一个三角形中,从而求出∠APB= ;
基本运用:
(2)请你利用第(1)题的解答思想方法,解答下面问题:
如图③,△ABC中,∠CAB=90°,AB=AC,E,F为BC上的点,且∠EAF=45°,判断BE,EF,FC之间的数量关系并证明;
能力提升:
(3)如图④,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,点P为Rt△ABC的费马点,连接AP,BP,CP,求PA+PB+PC的值.
【压轴必刷】2022中考数学压轴大题之经典模型培优案
专题21旋转模型综合问题
【例1】.如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.
(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.
①求证:△ABP∽△BCP;
②若PA=3,PC=4,则PB= 2 .
(2)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD相交于P点.如图(2)
①求∠CPD的度数;
②求证:P点为△ABC的费马点.
【分析】(1)①根据题意,利用内角和定理及等式性质得到一对角相等,利用两角相等的三角形相似即可得证;
②由三角形ABP与三角形BCP相似,得比例,将PA与PC的长代入求出PB的长即可;
(2)①根据三角形ABE与三角形ACD为等边三角形,利用等边三角形的性质得到两对边相等,两个角为60°,利用等式的性质得到夹角相等,利用SAS得到三角形ACE与三角形ABD全等,利用全等三角形的对应角相等得到∠1=∠2,再由对顶角相等,得到∠5=∠6,即可求出所求角度数;
②由三角形ADF与三角形CPF相似,得到比例式,变形得到积的恒等式,再由对顶角相等,利用两边成比例,且夹角相等的三角形相似得到三角形AFP与三角形CFD相似,利用相似三角形对应角相等得到∠APF为60°,由∠APD+∠DPC,求出∠APC为120°,进而确定出∠APB与∠BPC都为120°,即可得证.
【解答】(1)证明:①∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,
∴∠PAB=∠PBC,
又∵∠APB=∠BPC=120°,
∴△ABP∽△BCP,
②解:∵△ABP∽△BCP,
∴=,
∴PB2=PA•PC=12,
∴PB=2;
故答案为:2;
(2)解:①∵△ABE与△ACD都为等边三角形,
∴∠BAE=∠CAD=60°,AE=AB,AC=AD,
∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,
在△ACE和△ABD中,
,
∴△ACE≌△ABD(SAS),
∴∠1=∠2,
∵∠3=∠4,
∴∠CPD=∠6=∠5=60°;
②证明:方法一:∵△ADF∽△CFP,
∴=,
∴AF•PF=DF•CP,
∵∠AFP=∠CFD,
∴△AFP∽△CDF.
∴∠APF=∠ACD=60°,
∴∠APC=∠CPD+∠APF=120°,
∴∠BPC=120°,
∴∠APB=360°﹣∠BPC﹣∠APC=120°,
∴P点为△ABC的费马点.
方法二:由①知:∠CPD=60°,
∴∠BPC=180°﹣∠CPD=120°,
由①知:∠1=∠2,
∴A,P,C,D共圆,
∴∠APC+∠ADC=180°,
∴∠APC=180°﹣∠ADC=120°,
∴∠APB=360°﹣∠BPC﹣∠APC=120°,
∴P点为△ABC的费马点.
【例2】.如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.
(1)求证:△AMB≌△ENB;
(2)若AM+BM+CM的值最小,则称点M为△ABC的费马点.若点M为△ABC的费马点,试求此时∠AMB、∠BMC、∠CMA的度数;
(3)小翔受以上启发,得到一个作锐角三角形费马点的简便方法:如图②,分别以△ABC的AB、AC为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M即为△ABC的费马点.试说明这种作法的依据.
【分析】(1)结合等边三角形的性质,根据SAS可证△AMB≌△ENB;
(2)连接MN,由(1)的结论证明△BMN为等边三角形,所以BM=MN,即AM+BM+CM=EN+MN+CM,所以当E、N、M、C四点共线时,AM+BM+CM的值最小,从而可求此时∠AMB、∠BMC、∠CMA的度数;
(3)根据(2)中费马点的定义,又△ABC的费马点在线段EC上,同理也在线段BF上.因此线段EC与BF的交点即为△ABC的费马点.
【解析】(1)证明:∵△ABE为等边三角形,
∴AB=BE,∠ABE=60°.
而∠MBN=60°,
∴∠ABM=∠EBN.
在△AMB与△ENB中,
∵,
∴△AMB≌△ENB(SAS).
(2)连接MN.由(1)知,AM=EN.
∵∠MBN=60°,BM=BN,
∴△BMN为等边三角形.
∴BM=MN.
∴AM+BM+CM=EN+MN+CM.
∴当E、N、M、C四点共线时,AM+BM+CM的值最小.
此时,∠BMC=180°﹣∠NMB=120°;
∠AMB=∠ENB=180°﹣∠BNM=120°;
∠AMC=360°﹣∠BMC﹣∠AMB=120°.
(3)由(2)知,△ABC的费马点在线段EC上,同理也在线段BF上.
因此线段EC与BF的交点即为△ABC的费马点.
【例3】.如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.
(1)若点P是等边三角形三条中线的交点,点P 是 (填是或不是)该三角形的费马点.
(2)如果点P为锐角△ABC的费马点,且∠ABC=60°.求证:△ABP∽△BCP;
(3)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD相交于P点.如图(2)
①求∠CPD的度数;
②求证:P点为△ABC的费马点.
【分析】(1)依据等腰三角形三线合一的性质可知:MB平分∠ABC,则∠ABP=30°,同理∠BAP=30°,则∠APB=120°,同理可求得∠APC,∠BPC的度数,然后可作出判断;
(2)由费马点的定义可知∠PAB=∠PBC,然后再证明∠PAB=∠PBC即可;
(3)如图2所示:①首先证明△ACE≌△ABD,则∠1=∠2,由∠3=∠4可得到∠CPD=∠5; ②由∠CPD=60°可证明∠BPC=120°,然后证明△ADF∽△CFP,由相似三角形的性质和判定定理再证明△AFP∽△CDF,故此可得到∠APF=∠ACD=60°,然后可求得∠APC=120°,接下来可求得∠APB=120°.
【解析】(1)如图1所示:
∵AB=BC,BM是AC的中线,
∴MB平分∠ABC.
同理:AN平分∠BAC,PC平分∠BCA.
∵△ABC为等边三角形,
∴∠ABP=30°,∠BAP=30°.
∴∠APB=120°.
同理:∠APC=120°,∠BPC=120°.
∴P是△ABC的费马点.
故答案为:是.
(2)∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,
∴∠PAB=∠PBC,
又∵∠APB=∠BPC=120°,
∴△ABP∽△BCP.
(3)如图2所示:
①∵△ABE与△ACD都为等边三角形,
∴∠BAE=∠CAD=60°,AE=AB,AC=AD,
∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,
在△ACE和△ABD中,
∴△ACE≌△ABD(SAS),
∴∠1=∠2,
∵∠3=∠4,
∴∠CPD=∠6=∠5=60°;
②证明:∵△ADF∽△CFP,
∴AF•CF=DF•PF,
∵∠AFP=∠CFD,
∴△AFP∽△CDF.
∴∠APF=∠ACD=60°,
∴∠APC=∠CPD+∠APF=120°,
∴∠BPC=120°,
∴∠APB=360°﹣∠BPC﹣∠APC=120°,
∴P点为△ABC的费马点.
【例4】.【方法呈现】:
(1)已知,点P是正方形ABCD内的一点,连PA、PB、PC.将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图1),设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积;
【实际运用】:
(2)如图2,点P是等腰Rt△ABC内一点,AB=BC,连接PA,PB,PC.若PA=2,PB=4,PC=6,求∠APB的大小;
【拓展延伸】:
(3)如图3,点P是等边△ABC内一点,PA=3,PB=4,PC=5,则△APC的面积是 +3 (直接填答案)
【分析】(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积﹣扇形BPP'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积.
(2)连接PP′,求出△PBP′是等腰直角三角形,根据等腰直角三角形的性质可得PP′=4,∠BP′P=45°,再利用勾股定理逆定理求出∠CP′P=90°,然后计算即可得解;
(3)根据全等三角形的面积相等求出△APB与△APC的面积之和等于四边形APCP1的面积,然后根据等边三角形的面积与直角三角形的面积列式计算即可得解,同理求出△ABP和△BPC的面积的和,△APC和△BPC的面积的和,从而求出△ABC的面积,然后根据△BPC的面积=△ABC的面积﹣△APB与△APC的面积的和计算即可得解.
【解析】(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,
∴△PAB≌△P'CB,
∴S△PAB=S△P'CB,
S阴影=S扇形BAC﹣S扇形BPP′=(a2﹣b2);
(2)如图2,连接PP′.
∵将△PAB绕B点顺时针旋转90°,与△P′CB重合,
∴△PAB≌△P′CB,∠PBP′=90°,
∴BP=BP′,∠APB=∠CP′B,AP=CP′=2,
∴△PBP′是等腰直角三角形,
∴PP′=PB=4,∠BP′P=45°.
在△CPP′中,∵PP′=4,CP′=2,PC=6,
∴PP′2+CP′2=PC2,
∴△CP′P是直角三角形,∠CP′P=90°,
∴∠CP′B=∠BP′P+∠CP′P=45°+90°=135°;
(3)如图3①,将△PAB绕A点逆时针旋转60°得到△P1AC,连接PP1,
∴△APB≌△AP1C,
∴AP=AP1,∠PAP1=60°,CP1=BP=4,
∴△PAP1是等边三角形,
∴PP1=AP=3,
∵CP=5,CP1=4,PP1=3,
∴PP12+CP12=CP2,
∴△CP1P是直角三角形,∠CP1P=90°,
∴S△APP1=×3×=,S△PP1C=×3×4=6,
∴S四边形APCP1=S△APP1+S△PP1C=+6;
∵△APB≌△AP1C,
∴S△ABP+S△APC=S四边形APCP1=+6;
如图3②,同理可求:△ABP和△BPC的面积的和=×4×+×3×4=4+6,
△APC和△BPC的面积的和=×5×+×3×4=+6,
∴△ABC的面积=(+6+4+6++6)=+9,
∴△APC的面积=△ABC的面积﹣△APB与△BPC的面积的和=(+9)﹣(4+6)=+3.
故答案为+3.
1.如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB.
(1)求点P与点P′之间的距离;
(2)求∠APB的度数.
【分析】(1)由已知△PAC绕点A逆时针旋转后,得到△P′AB,可得△PAC≌△P′AB,PA=P′A,旋转角∠P′AP=∠BAC=60°,所以△APP′为等边三角形,即可求得PP′;
(2)由△APP′为等边三角形,得∠APP′=60°,在△PP′B中,已知三边,用勾股定理逆定理证出直角三角形,得出∠P′PB=90°,可求∠APB的度数.
【解析】(1)连接PP′,由题意可知BP′=PC=10,AP′=AP,
∠PAC=∠P′AB,而∠PAC+∠BAP=60°,
所以∠PAP′=60度.故△APP′为等边三角形,
所以PP′=AP=AP′=6;
(2)利用勾股定理的逆定理可知:
PP′2+BP2=BP′2,所以△BPP′为直角三角形,且∠BPP′=90°
可求∠APB=90°+60°=150°.
2.(原题初探)(1)小明在数学作业本中看到有这样一道作业题:如图1,P是正方形ABCD内一点,连结PA,PB,PC现将△PAB绕点B顺时针旋转90°得到的△P′CB,连接PP′.若PA=,PB=3,∠APB=135°,则PC的长为 2 ,正方形ABCD的边长为 .
(变式猜想)(2)如图2,若点P是等边△ABC内的一点,且PA=3,PB=4,PC=5,请猜想∠APB的度数,并说明理由.
(拓展应用)(3)聪明的小明经过上述两小题的训练后,善于反思的他又提出了如下的问题:
如图3,在四边形ABCD中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,则BD的长度为 .
【分析】(1)由旋转的性质得BP=BP′=3,P′C=PA=,∠PBP′=90°,∠BP′C=∠APB=135°,则△BPP′为等腰直角三角形,再由勾股定理得PC=2,过点A作AE⊥BP交BP的延长线于E,则△AEP是等腰直角三角形,得AE=PE=1,得BE=4,然后由勾股定理即可求解;
(2)由旋转的性质得△BPP′是等边三角形,则PP′=BP=4,∠BPP′=60°,AP=3,AP′=PC=5,再由勾股定理得逆定理得△APP′为直角三角形,即可求解;
(3)由旋转的性质得AK=AD=3,CK=BD,∠KAD=90°,则△DAK是等腰直角三角形,得DK=3,∠ADK=45°,再证∠CDK=90°,即可解决问题.
【解析】(1)∵△PAB绕点B顺时针旋转90°得到的△P′CB,
∴BP=BP′=3,P′C=PA=,∠PBP′=90°,∠BP′C=∠APB=135°,
∴△BPP′为等腰直角三角形,
∴∠BP′P=45°,PP′=PB=3,
∴∠PP′C=135°﹣45°=90°,
在Rt△PP′C中,由勾股定理得:PC===2,
过点A作AE⊥BP交BP的延长线于E,如图1所示:
∵∠APB=135°,
∴∠APE=180°﹣135°=45°,
∴△AEP是等腰直角三角形,
∴AE=PE=PA=×=1,
∴BE=PB+PE=3+1=4,
在Rt△AEB中,由勾股定理得:AB===,
故答案为:2,;
(2)∠APB的度数为150°,理由如下:
∵△ABC是等边三角形,
∴AB=BC,∠ABC=60°,
将△BPC绕点B逆时针旋转60°,得到△BP′A,连接PP′,如图2所示:
则△BPP′是等边三角形,
∴PP′=BP=4,∠BPP′=60°,
∵AP=3,AP′=PC=5,
∴P'P2+AP2=AP'2,
∴△APP′为直角三角形,
∴∠APP′=90°,
∴∠APB=∠APP′+∠BPP′=90°+60°=150°;
(3)∵∠ABC=∠ACB=∠ADC=45°,
∴△BAC是等腰直角三角形,
∴∠BAC=90°,AB=AC,
将△ABD绕点A顺时针旋转90°,得到△ACK,连接DK,如图3所示:
由旋转的性质得:AK=AD=3,CK=BD,∠KAD=90°,
∴△DAK是等腰直角三角形,
∴DK=AD=3,∠ADK=45°,
∴∠CDK=∠ADC+∠ADK=45°+45°=90°,
∴△CDK是直角三角形,
∴CK===,
∴BD=,
故答案为:.
3.问题:如图1,在等边△ABC内部有一点P,已知PA=3,PB=4,PC=5,求∠APB的度数?
(1)请写出常见四组勾股数: 3,4,5 、 5,12,13 、 7,24,25 、 6,8,10 .
(2)解决方法:通过观察发现PA,PB,PC的长度符合勾股数,但由于PA,PB,PC不在一个三角形中,想法将这些条件集中在一个三角形,于是可将△ABP绕A逆时针旋转60°到△AP′C,此时△ABP≌△ACP',这样利用等边三角形和全等三角形知识,便可求出∠APB= 150° .请写出解题过程.
(3)应用:请你利用(2)题的思路,解答下面的问题:
如图2,在△ABC中,∠CAB=90°,AB=AC,E,F为BC的点,且∠EAF=45°,若BE=m,FC=n,请求出线段EF的长度(用m、n的代数式表示).
【分析】(1)根据勾股数的定义解决问题即可.
(2)根据等边三角形的性质得出AB=AC,∠BAC=60°,根据旋转得出△ACP′≌△ABP,求出PA=P′A=3,PB=P′C=4,∠BAP=∠CAP′,求出∠P′AP=∠BAC=60°,推出△PAP′是等边三角形,求出PP′=P′A=3,根据勾股定理的逆定理求出∠PP′C=90°,即可得出答案;
(3)根据旋转得出△ACE′≌△ABE,根据全等得出AE=AE′,BE=CE′,∠E′AC=′BAE,求出∠FAE′=∠EAF,根据全等三角形的判定推出△AEF≌△AE′F,推出FE=FE′,根据勾股定理求出E′F即可.
【解析】(1)勾股数:3,4,5;5,12,13,7,24,25;6,8,10;
故答案为:3,4,5;5,12,13,7,24,25;6,8,10;
(2)如图1,将△ABP绕顶点A逆时针旋转60°到△ACP′处,则△ACP′≌△ABP,
∵三角形ABC是等边三角形,
∴AB=AC,∠BAC=60°,
∴PA=P′A=3,PB=P′C=4,∠BAP=∠CAP′,
∴∠P′AP=∠PAC+∠CAP′=∠PAC+∠BAP=∠BAC=60°,
∴△PAP′是等边三角形,
∴PP′=P′A=3,
在△PP′C中,PP'2+P′C2=9+16=25=PC2,
∴△PP′C是直角三角形,
∴∠PP′C=90°,
∴∠APB=∠AP′C=60°+90°=150°.
故答案为150°.
(3)如图2中,将△ABE绕顶点A逆时针旋转90°到△ACE′处,则△ACE′≌△ABE,
∴AE=AE′,BE=CE′,∠E′AC=∠BAE,
∵∠BAC=90°,∠EAF=45°,
∴∠BAE+∠CAF=45°,
∠FAE′=∠E′AC+∠FAC=∠BAE+∠FAC=45°=∠EAF,
在△AEF和△AE′F中,
,
∴△AEF≌△AE′F(SAS),
∴FE=FE′,
∵∠BAC=90°,AB=AC,
∴∠B=∠ACB=45°,
∴∠E′CA=∠B=45°,
∴∠E′CF=45°+45°=90°,
在Rt△E′FC中,E′C2+FC2=E′F2,
∴EF2=BE2+CF2=m2+n2,
∴EF=.
4.(1)如图1,点P是等边△ABC内一点,已知PA=3,PB=4,PC=5,求∠APB的度数.
分析:要直接求∠APB的度数显然很困难,注意到条件中的三边长恰好是一组勾股数,因此考虑借助旋转把这三边集中到一个三角形内.
解:如图2,作∠PAD=60°使AD=AP,连接PD,CD,则△PAD是等边三角形.
∴ PD =AD=AP=3,∠ADP=∠PAD=60°
∵△ABC是等边三角形
∴AC=AB,∠BAC=60°∴∠BAP= ∠CAD
∴△ABP≌△ACD
∴BP=CD=4, ∠APB =∠ADC
∵在△PCD中,PD=3,PC=5,CD=4,PD2+CD2=PC2
∴∠PDC= 90 °
∴∠APB=∠ADC=∠ADP+∠PDC=60°+90°=150°
(2)如图3,在△ABC中,AB=BC,∠ABC=90°,点P是△ABC内一点,PA=1,PB=2,PC=3,求∠APB的度数.
(3)拓展应用.如图(4),△ABC中,∠ABC=30°,AB=4,BC=5,P是△ABC内部的任意一点,连接PA,PB,PC,则PA+PB+PC的最小值为 .
【分析】(1)根据全等三角形的判定和性质解决问题即可.
(2)如图3中,把△PBC绕B点逆时针旋转90°得到△DBA,利用勾股定理的逆定理证明∠APD=90°即可解决问题.
(3)如图4中,先由旋转的性质得出△ABP≌△DBE,则∠ABP=∠DBE,BD=AB=4,∠PBE=60°,BE=PE,AP=DE,再证明∠DBC=90°,然后在Rt△BCD中,由勾股定理求出CD的长度,即为PA+PB+PC的最小值;
【解析】(1)如图2,作∠PAD=60°使AD=AP,连接PD,CD,则△PAD是等边三角形.
∴PD=AD=AP=3,∠ADP=∠PAD=60°
∵△ABC是等边三角形
∴AC=AB,∠BAC=60°,
∴∠BAP=∠CAD,
∴△ABP≌△ACD(SAS)
∴BP=CD=4,∠APB=∠ADC
∵在△PCD中,PD=3,PC=5,CD=4,PD2+CD2=PC2
∴∠PDC=90°
∴∠APB=∠ADC=∠ADP+∠PDC=60°+90°=150°
故答案为:PD,∠CAD,∠APB,90.
(2)解:∵∠ABC=90°,BC=AB,
∴把△PBC绕B点逆时针旋转90°得到△DBA,如图,
∴AD=PC=3,BD=BP=2,
∵∠PBD=90°
∴DP=PB=2,∠DPB=45°,
在△APD中,AD=3,PD=2,PA=1,
∵12+(2)2=32,
∴AP2+PD2=BD2,
∴△APD为直角三角形,
∴∠APD=90°,
∴∠APB=∠APD+∠DPB=90°+45°=135°.
(3)解:如图4中,将△ABP绕着点B逆时针旋转60°,得到△DBE,连接EP,CD,
∴△ABP≌△DBE
∴∠ABP=∠DBE,BD=AB=4,∠PBE=60°,BE=PE,AP=DE,
∴△BPE是等边三角形
∴EP=BP
∴AP+BP+PC=PC+EP+DE
∴当点D,点E,点P,点C共线时,PA+PB+PC有最小值CD
∵∠ABC=30°=∠ABP+∠PBC
∴∠DBE+∠PBC=30°
∴∠DBC=90°
∴CD===,
故答案为.
5.如图1,D、E、F是等边三角形ABC中不共线三点,连接AD、BE、CF,三条线段两两分别相交于D、E、F.已知AF=BD,∠EDF=60°.
(1)证明:EF=DF;
(2)如图2,点M是ED上一点,连接CM,以CM为边向右作△CMG,连接EG.若EG=EC+EM,CM=GM,∠GMC=∠GEC,证明:CG=CM.
(3)如图3,在(2)的条件下,当点M与点D重合时,若CD⊥AD,GD=4,请问在△ACD内部是否存在点P使得P到△ACD三个顶点距离之和最小,若存在请直接写出距离之和的最小值;若不存在,试说明理由.
【分析】(1)可先推出∠CAF=∠ABD,再证△ACF≌△BAD,即可得出结论;
(2)在EF上截取EN=EM,连接MN,可推出△EMN是等边三角形,可证△NCM≌△EGM,然后推出△CMG是等边三角形,从而问题得证;
(3)先求得AD=,将△DPC绕点D顺时针旋转60°至△DQG,连接AG,可得△PDQ是等边三角形,于是AP+PD+CP=AP+PQ+QG,故当A、P、Q、G共线时,AP+PD+CP最小=AG,最后解斜三角形ADG,从而求得.
【解答】(1)证明:如图1,
∵△ABC是等边三角形,
∴AC=AB,
∠ACB=60°,
∴∠CAF+∠DAB=60°,
∵∠EDF=60°,
∴∠DAB+∠ABD=60°,
∴∠CAF=∠ABD,
∵AF=BD,
∴△ACF≌△BAD(SAS),
∴EF=DF;
(2)证明:如图2,
由(1)知,
EF=DF,∠EDF=60°,
∴△DEF是等边三角形,
∴∠DEF=60°,
在EF上截取EN=EM,连接MN,
∴CN=CE+EN=CE+EM=EG,
∴△EMN是等边三角形,
∴∠CNM=60°,
∵∠GMC=∠GEC,∠α=∠β,
∴∠NCM=∠EGM,
∵CM=GM,
∴△NCM≌△EGM(SAS),
∴∠MEG=∠CNM=60°,
∴∠CEG=180°﹣∠MEG﹣∠FED=60°,
∴∠GME=∠GEC=60°,
∵CM=GM,
∴△CMG是等边三角形,
∴CG=CM;
(3)解:如图3,
由(1)(2)知,
△DEF和△CDG是等边三角形,
∴∠CFD=60°,CD=GD=4,
∵CD⊥AD,
∴∠CDF=90°,
∴AD=CF==,
将△DPC绕点D顺时针旋转60°至△DQG,连接AG,
∴AD=DQ,CP=QG,
∴△PDQ是等边三角形,
∴PD=PQ,
∴AP+PD+CP=AP+PQ+QG,
∴当A、P、Q、G共线时,AP+PD+CP最小=AG,
作GH⊥AD于H,
在Rt△DGH中,
GH=DG=2,
DH=DG=2,
∴AH=AD+DH=+2=,
∴AG=
=
=,
∴AP+PD+CP的最小值是.
6.如图①,P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.
(1)如果点P为锐角三角形ABC的费马点,且∠ABC=60°.
①求证:△ABP∽△BCP;
②若PA=3,PC=4,求PB的长.
(2)已知锐角三角形ABC,分别以AB、AC为边向外作正三角形ABE和正三角形ACD,CE和BD相交于P点,连结AP,如图②.
①求∠CPD的度数;
②求证:P点为△ABC的费马点.
【分析】(1)①由三角形内角和定理可求∠PBA+∠PAB=60°,可证∠PBC=∠BAP,可得结论;
②由相似三角形的性质可得,即可求解;
(2)①由“SAS”可证△ACE≌△ADB,可得∠1=∠2,即可求解;
②通过证明△ADF∽△CFP,可得,可证△AFP∽△CDF,可得∠APF=∠ACD=60°,可得结论.
【解答】(1)①证明:∵点P为锐角三角形ABC的费马点,
∴∠APB=∠BPC=∠CPA=120°,
∴∠PBA+∠PAB=60°,
∵∠ABC=60°,
∴∠ABP+∠PBC=60°,
∴∠PBC=∠BAP,
又∵∠APB=∠BPC,
∴△ABP∽△BCP,
②解:∵△ABP∽△BCP,
∴,
又∵PA=3,PC=4,
∴,
∴PB=2;
(2)①解:设AC与BD的交点于F,
如图,∵△ABE与△ACD都为等边三角形,
∴∠BAE=∠CAD=60°,AE=AB,AC=AD,
∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,
在△ACE和△ADB中,
,
∴△ACE≌△ADB(SAS),
∴∠1=∠2,
∵∠3=∠4,
∴∠CPD=∠6=∠5=60°;
②证明:∵∠1=∠2,∠5=∠6,
∴△ADF∽△CFP,
∴,
∴AF•PF=DF•CP,
∵∠AFP=∠CFD,
∴△AFP∽△CDF,
∴∠APF=∠ACD=60°,
∴∠APC=∠CPD+∠APF=120°,
∴∠BPC=120°,
∴∠APB=360°﹣∠BPC﹣∠APC=120°,
∴P点为△ABC的费马点.
7.【问题情境】
如图1,在△ABC中,∠A=120°,AB=AC,BC=5,则△ABC的外接圆的半径值为 5 .
【问题解决】
如图2,点P为正方形ABCD内一点,且∠BPC=90°,若AB=4,求AP的最小值.
【问题解决】
如图3,正方形ABCD是一个边长为3cm的隔离区域设计图,CE为大门,点E在边BC上,CE=cm,点P是正方形ABCD内设立的一个活动岗哨,到B、E的张角为120°,即∠BPE=120°,点A、D为另两个固定岗哨.现需在隔离区域内部设置一个补水供给点Q,使得Q到A、D、P三个岗哨的距离和最小,试求QA+QD+QP的最小值.(保留根号或结果精确到1cm,参考数据≈1.7,10.52=110.25).
【分析】(1)作出三角形的外接圆O,证明△OBA是等边三角形,利用三线合一性质计算即可;
(2 )点P在以BC为直径的圆上,根据圆心,P,A三点共线时AP最小,计算即可;
(3)如图3,设∠BPE所在圆的圆心为点O,根据(1)可得∠BPE所在圆的半径,以点D为旋转中心,将△DQA顺时针旋转60°,得到△DFN,当N,F,Q,P,O共线时,QA+QD+QP最小,构造直角三角形求解即可.
【解析】(1)如图1,作△ABC的外接圆O,作直径AD,连接OB,
∵AB=AC,
∴AO⊥BC,∠BAO=60°,
∵OA=OB,
∴△OBA是等边三角形,
∴AB=OA=OB,
设AD与BC交于点E,BE=BC=,
在直角三角形ABE中,
∵sin∠BAO=,
∴sin60°==,
∴AB=5,
∴OA=5,
故答案为:5;
(2 )如图2,
∵∠BPC=90°,
∴点在以BC为直径的圆上,设圆心为点O,
则OP=BC=2,
∴O,P,A三点线时AP最小,
在直角三角形ABO中,
AO==2,
∵PO=2,
∴AP的最小值为:AO﹣PO=2﹣2;
(3)如图3,设∠BPE所在圆的圆心为点O,根据(1)可得∠BPE所在圆的半径为=2,以点D为旋转中心,将△DQA顺时针旋转60°,得到△DFN,当N,F,Q,P,O共线时,QA+QD+QP最小,过点N作NG⊥AB交BA的延长线于点G,连接AN,则△AND是等边三角形,过点O作OM⊥GN于M交BC于点H,连接OB,
∵四边形ABCD是正方形,
∴AD∥BC∥GN,
∴OH⊥BC,
∵BE=2,
∴BH=,
∴OH==1,
∵AD=DN,∠ADN=60°,
∴△AND是等边三形,且AN=3,∠NAD=60°,
∴∠GAN=30°,
∴GN=ANsin30°=,AG=ANcos30°=,
∴OM=OH+AB+AG=+1+3=+3,MN=GN﹣BH=﹣=,
∴ON==≈11,
∴QA+QD+QP最小值为:11﹣2=9(cm).
8.问题提出
(1)如图,点M、N是直线l外两点,在直线l上找一点K,使得MK+NK最小.
问题探究
(2)在等边三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB度数的大小.
问题解决
(3)如图,矩形ABCD是某公园的平面图,AB=30米,BC=60米,现需要在对角线BD上修一凉亭E,使得到公园出口A、B,C的距离之和最小.问:是否存在这样的点E?
若存在,请画出点E的位置,并求出EA+EB+EC的和的最小值;若不存在,请说明理由.
【分析】(1)根据两点间线段距离最短,连接点M、N是,与直线l交于点K,点K 即为所求;
(2)把△APB绕点A逆时针旋转60°得到△ACP′,由旋转的性质可知APP′是等边三角形,所以∠AP′P=60°,由勾股定理逆定理可知∠PP′C=为直角,从而求得∠AP′C为150°,所以∠APB为150°;
(3)把△ABE绕点B逆时针旋转60°得到△A'BE′,由旋转的性质,A′B=AB=30,BE′=BE,A'E′=AE,∠E′BE=60°,A'BA=60°,所以△E′BE是等边三角形,
根据两点间线段距离最短,可知当EA+EB+EC=A'C时最短,连接A'C,与BD的交点时,点E即为所求,此时EA+EB+EC最短,最短距离为A'C的长度,然后过点A'作A'G⊥BC,利用勾股定理求出A'C的长度,即求得EA+EB+EC的和的最小值.
【解析】(1)如图1,连接点M、N,与直线l交于点K,点K 即为所求.
(2)如图2,把△APB绕点A逆时针旋转60°得到△AP′C,
由旋转的性质,P′A=PA=3,P′C=PB=4,∠PAP′=60°,
∴△APP′是等边三角形,
∴PP′=PA=3,∠AP′P=60°,
∵PP′2+P′C2=32+42=25,PC2=52=25,
∴PP′2+P′C2=PC2,
∴∠PP′C=90°,
∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°;
故∠APB=∠AP′C=150°;
(3)如图3,把△ABE绕点B逆时针旋转60°得到△A'BE′,
由旋转的性质,A′B=AB=30,BE′=BE,A'E′=AE,∠E′BE=60°,∠A'BA=60°,
∴△E′BE是等边三角形,
∴BE=EE',
∴EA+EB+EC=A'E′+EE'+EC,
根据两点间线段距离最短,可知当EA+EB+EC=A'C时最短,连接A'C,与BD的交点时,点E即为所求,此时EA+EB+EC最短,最短距离为A'C的长度.
过点A'作A'G⊥BC交CB的延长线于点G,则∠A'BG=90°﹣∠A'BA=90°﹣60°=30°.
A'G=A'B=AB=×30=15,GB=A'G=×15=45,GC=GB+BC=45+60=105,
在Rt△A'GC中,A'C==,
因此EA+EB+EC的和的最小值.
9.在平面直角坐标系中,二次函数y=ax2+bx﹣8的图象与x轴交于A、B两点,与y轴交于点C,直线y=kx+(k≠0)经过点A,与抛物线交于另一点R,已知OC=2OA,OB=3OA.
(1)求抛物线与直线的解析式;
(2)如图1,若点P是x轴下方抛物线上一点,过点P做PH⊥AR于点H,过点P做PQ∥x轴交抛物线于点Q,过点P做PH′⊥x轴于点H′,K为直线PH′上一点,且PK=2PQ,点I为第四象限内一点,且在直线PQ上方,连接IP、IQ、IK,记l=PQ,m=IP+IQ+IK,当l取得最大值时,求出点P的坐标,并求出此时m的最小值.
(3)如图2,将点A沿直线AR方向平移13个长度单位到点M,过点M做MN⊥x轴,交抛物线于点N,动点D为x轴上一点,连接MD、DN,再将△MDN沿直线MD翻折为△MDN′(点M、N、D、N′在同一平面内),连接AN、AN′、NN′,当△ANN′为等腰三角形时,请直接写出点D的坐标.
【分析】(1)令二次函数x=0,解出C点坐标(0,﹣8),根据已知条件可知点A(﹣4,0)点B(12,0).代入解析式从而求得抛物线和直线解析式.
(2)设点P坐标的横坐标为p,求出对称轴为直线x=4,根据对称性求出点Q的坐标,从而求出PQ的长度,延长PK交直线AR与点M,利用一次函数解析式求出点M的坐标,PM线段长可表示,利用△PHM∽△AEO,求出PH的长度,则I可用点p的代数式表示,从而求得最大值,点P坐标也可求出,由m=IP+IQ+IK求其最小值可知,点I为△PQK的“费马点”.
(3)由点A平移13个单位可知点M的坐标,则点N的坐标可求为(8,﹣8)可求AN的长度,MN的长度为13,因为翻折可知MN′的长度也为13,则N′在以点M为圆心13个单位长度为半径的圆上运动,再利用等腰三角形求出点D的坐标.
【解答】解(1)∵y=ax2+bx﹣8与y轴的交点为C,令x=0,y=﹣8
∴点C(0,﹣8)
∴OC=8
∵OC=2OA,OB=3OA
∴OA=4,OB=12
∴A(﹣4,0)B(12,0)
将点A代入直线解析式可得0=﹣4k+
解得k=
∴y=x+
将点A和点B代入抛物线中
解得a=,b=﹣
∴y=x2﹣x﹣8
(2)设点P的坐标为(p,p2﹣p﹣8)
﹣=4
∴抛物线的对称轴为直线x=4
∴点Q(8﹣p,)
∴PQ=2p﹣8
∵PK=2PQ
∴PK=4p﹣16
如图1所示,延长PK交直线AR于点M,则M(p,)
∴PM=﹣()=
∵∠PHM=∠MH′A,∠HMP=∠AMH′
∴∠HPM=∠MAH′
∵直线解析式为y=,令x=0,y=.
∴OE=
∵OA=4
根据勾股定理得∴AE=
∴cos∠EAO==
∴cos∠HPM===
∴PH=
∵I=PH﹣PQ
∴I=()﹣(2p﹣8)=﹣(p﹣5)2+85
∴当p=5时,I取最大值此时点P(5,)
∴PQ=2,PK=
如图2所示,连接QK,以PQ为边向下做等边三角形PQD,连接KD,在KD取I,
使∠PID=60°,以PI为边做等边三角形IPF,连接IQ
∵IP=PF,PQ=PD,∠IPQ=∠FPD
∴△IPQ≌△FPD
∴DF=IQ
∴IP+IQ+IK=IF+FD+IK=DK,此时m最小
过点D作DN垂直于KP
∵∠KPD=∠KPQ+∠QPD=150°
∴∠PDN=30°
∵DP=PQ=2
∴DN=1,根据勾股定理得PN=
在△KDN中,KN=5,DN=1,根据勾股定理得KD=2
∴m的最小值为2
(3)设NM与x轴交于点J
∵AM=13,cos∠MAJ=
∴AJ=12,根据勾股定理得MJ=5
∵OA=4,∴OJ=8
∴M(8,5)
当x=8时,代入抛物线中,可得y=﹣8
∴N(8,﹣8),MN=13
在△AJN中,根据勾股定理得AN=4
∵点D为x轴上的动点,根据翻折,MN′=13,所以点N′在以M为圆心,13个单位长度为半径的圆上运动,如图3所示
①当N′落在AN的垂直平分线上时
tan∠MNA==
∴tan∠MGJ=,∵MJ=5
∴JG=,根据勾股定理得MG=
∵MD1为∠GMJ的角平分线
∴
∴D1J=∴D1(,0)
∵MD4也为角平分线
∴∠D1MD4=90°
根据射影定理得MJ2=JD1•JD4
∴JD4=
∴D4(,0)
②当AN=AN′时
D2与点A重合
∴D2(﹣4,0)
∵MD3为角平分线
∴
∴JD3=
∴D3(,0)
综上所述D1(,0),D2(﹣4,0),D3(,0),D4(,0).
10.(1)如图1,点P是等边△ABC内一点,已知PA=3,PB=4,PC=5,求∠APB的度数.
要直接求∠A的度数显然很困难,注意到条件中的三边长恰好是一组勾股数,因此考虑借助旋转把这三边集中到一个三角形内,如图2,作∠PAD=60°使AD=AP,连接PD,CD,则△PAD是等边三角形.
∴ PD =AD=AP=3,∠ADP=∠PAD=60°
∵△ABC是等边三角形
∴AC=AB,∠BAC=60°
∴∠BAP= ∠CAD
∴△ABP≌△ACD
∴BP=CD=4, ∠APB =∠ADC
∵在△PCD中,PD=3,PC=5,CD=4,PD2+CD2=PC2
∴∠PDC= 90 °
∴∠APB=∠ADC=∠ADP+∠PDC=60°+90°=150°
(2)如图3,在△ABC中,AB=BC,∠ABC=90°,点P是△ABC内一点,PA=1,PB=2,PC=3,求∠APB的度数.
【分析】(1)如图2,作∠PAD=60°使AD=AP,连接PD,CD,则△PAD是等边三角形.只要证明△ABP≌△ACD(SAS),推出BP=CD=4,∠APB=∠ADC,再利用勾股定理的逆定理即可解决问题;
(2)把△PAC绕A点逆时针旋转90°得到△DBA,如图,想办法证明△BPD是等腰三角形即可解决问题;
【解析】(1)如图2,作∠PAD=60°使AD=AP,连接PD,CD,则△PAD是等边三角形.
∴PD=AD=AP=3,∠ADP=∠PAD=60°,
∵△ABC是等边三角形,
∴AC=AB,∠BAC=60°,
∴∠BAP=∠CAD,
∴△ABP≌△ACD(SAS),
∴BP=CD=4,∠APB=∠ADC
∵在△PCD中,PD=3,PC=5,CD=4,PD2+CD2=PC2
∴∠PDC=90°
∴∠APB=∠ADC=∠ADP+∠PDC=60°+90°=150°
故答案为:PD,∠CAD,∠APB,90.
(2)解:∵∠ABC=90°,BC=AB,
∴把△PAC绕A点逆时针旋转90°得到△DBA,如图,
∴BD=PC=3,AD=AP=2,∠PAD=90°,
∴△PAD为等腰直角三角形,
∴DP=PA=2,∠DPA=45°,
在△BPD中,PB=2,PD=2,DB=3,
∵12+(2)2=32,
∴AP2+PD2=BD2,
∴△BPD为直角三角形,
∴∠BPD=90°,
∴∠APB=∠APD+∠DPB=90°+45°=135°.
11.(1)知识储备
①如图1,已知点P为等边△ABC外接圆的BC上任意一点.求证:PB+PC=PA.
②定义:在△ABC所在平面上存在一点P,使它到三角形三顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离.
(2)知识迁移
①我们有如下探寻△ABC(其中∠A,∠B,∠C均小于120°)的费马点和费马距离的方法:
如图2,在△ABC的外部以BC为边长作等边△BCD及其外接圆,根据(1)的结论,易知线段 AD 的长度即为△ABC的费马距离.
②在图3中,用不同于图2的方法作出△ABC的费马点P(要求尺规作图).
(3)知识应用
①判断题(正确的打√,错误的打×):
ⅰ.任意三角形的费马点有且只有一个 √ ;
ⅱ.任意三角形的费马点一定在三角形的内部 × .
②已知正方形ABCD,P是正方形内部一点,且PA+PB+PC的最小值为,求正方形ABCD的
边长.
【分析】(1)①根据已知首先得出△PCE为等边三角形,进而得出△ACP≌△BCE(SAS),即AP=AE+EP=BP+PE=BP+PC;
(2)①利用(1)中结论得出PA+PB+PC=PA+(PB+PC)=PA+PD;以及线段的性质“两点之间线段最短”容易获解;
②画出图形即可;也可以将AC绕点C按顺时针旋转60°得到A′C,连接A′B,作∠A′PC=60°,然后在A′P上截取PP′=PC,则△P′PC是等边三角形,由旋转的性质及两点之间线段最短即可得出结论;
(3)①根据费马点和费马距离的定义直接判定即可;
②将△ABP沿点B逆时针旋转60°到△A1BP1,如图5,根据PA+PB+PC的最小值为,得P1A1+PP1+PC的最小值为,即A1C=,设正方形的边长为2x,根据勾股定理列方程得:得:,解出可得正方形的边长.
【解答】(1)①证明:在PA上取一点E,使PE=PC,连接CE,
∵△ABC是等边三角形,
∴∠APC=∠ABC=60°,
又∵PE=PC,
∴△PEC是正三角形,
∴CE=CP,∠ACB=∠ECP=60°,
∴∠ACE=∠BCP,
又∵∠PBC=∠PAC,BC=AC,
∴△ACE≌△BCP (ASA),
∴AE=PB,
∴PB+PC=AE+PE=AP;(4分)
(2)①如图2,得:PA+PB+PC=PA+(PB+PC)=PA+PD,
∴当A、P、D共线时,PA+PB+PC的值最小,
∴线段AD的长度即为△ABC的费马距离,
故答案为:AD; (6分)
②过AB和AC分别向外作等边三角形,连接CD,BE,交点即为P.(过AC或AB作外接圆视作与图2相同的方法,不得分). (8分)
(3)①ⅰ.(√);
ⅱ.当三角形有一内角大于或等于120°时,所求三角形的费马点为三角形最大内角的顶点(×) (10分)
故答案为:i,√,ii,×;
②解:将△ABP沿点B逆时针旋转60°到△A1BP1,
如图5,过A1作A1H⊥BC,交CB的延长线于H,连接P1P,
易得:A1B=AB,PB=P1B,PA=P1 A1,∠P1BP=∠A1BA=60°,
∵PB=P1B,∠P1BP=60°,
∴△P1PB是正三角形,
∴PP1=PB,
∵PA+PB+PC的最小值为,
∴P1A1+PP1+PC的最小值为,
∴A1,P1,P,C在同一直线上,即A1C=,(12分)
设正方形的边长为2x,
∵∠A1BA=60°,∠CBA=90°,
∴∠1=30°,
在Rt△A1HB中,A1B=AB=2x,∠1=30°,
得:A1H=x,BH=,
在Rt△A1HC中,由勾股定理得:,
解得:x1=1 x2=﹣1(舍去)
∴正方形ABCD的边长为2. (14分)
12.背景资料:
在已知△ABC所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.
这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.
如图①,当△ABC三个内角均小于120°时,费马点P在△ABC内部,此时∠APB=∠BPC=∠CPA=120°,此时,PA+PB+PC的值最小.
解决问题:
(1)如图②,等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数.
为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP,这样就可以利用旋转变换,将三条线段PA,PB,PC转化到一个三角形中,从而求出∠APB= 150° ;
基本运用:
(2)请你利用第(1)题的解答思想方法,解答下面问题:
如图③,△ABC中,∠CAB=90°,AB=AC,E,F为BC上的点,且∠EAF=45°,判断BE,EF,FC之间的数量关系并证明;
能力提升:
(3)如图④,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,点P为Rt△ABC的费马点,连接AP,BP,CP,求PA+PB+PC的值.
【分析】(1)根据旋转变换前后的两个三角形全等,全等三角形对应边相等,全等三角形对应角相等以及等边三角形的判定和勾股定理逆定理解答;
(2)把△ABE绕点A逆时针旋转90°得到△ACE′,根据旋转的性质可得AE′=AE,CE′=CE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,再求出∠E′AF=45°,从而得到∠EAF=∠E′AF,然后利用“边角边”证明△EAF和△E′AF全等,根据全等三角形对应边相等可得E′F=EF,再利用勾股定理列式即可得证.
(3)将△APB绕点B顺时针旋转60°至△A′P′B处,连接PP′,根据直角三角形30°角所对的直角边等于斜边的一半求出AB=2AC,即A′B的长,再根据旋转的性质求出△BPP′是等边三角形,根据等边三角形的三条边都相等可得BP=PP′,等边三角形三个角都是60°求出∠BPP′=∠BP′P=60°,然后求出C、P、A′、P′四点共线,再利用勾股定理列式求出A′C,从而得到PA+PB+PC=A′C.
【解析】(1)∵△ACP′≌△ABP,
∴AP′=AP=3、CP′=BP=4、∠AP′C=∠APB,
由题意知旋转角∠PA P′=60°,
∴△AP P′为等边三角形,
P P′=AP=3,∠A P′P=60°,
易证△P P′C为直角三角形,且∠P P′C=90°,
∴∠APB=∠AP′C=∠A P′P+∠P P′C=60°+90°=150°;
故答案为:150°;
(2)EF2=BE2+FC2,理由如下:
如图2,把△ABE绕点A逆时针旋转90°得到△ACE′,
由旋转的性质得,AE′=AE,CE′=BE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,
∵∠EAF=45°,
∴∠E′AF=∠CAE′+∠CAF=∠BAE+∠CAF=∠BAC﹣∠EAF=90°﹣45°=45°,
∴∠EAF=∠E′AF,
在△EAF和△E′AF中,
,
∴△EAF≌△E′AF(SAS),
∴E′F=EF,
∵∠CAB=90°,AB=AC,
∴∠B=∠ACB=45°,
∴∠E′CF=45°+45°=90°,
由勾股定理得,E′F2=CE′2+FC2,即EF2=BE2+FC2.
(3)如图④,将△APB绕点B顺时针旋转60°至△A′P′B处,连接PP′,
∵在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,∴AB=2,
∴BC==,
∵△APB绕点B顺时针方向旋转60°,∴△A′P′B如图所示;
∠A′BC=∠ABC+60°=30°+60°=90°,
∴AB=2AC=2,
∵△APB绕点B顺时针方向旋转60°,得到△A′P′B,
∴A′B=AB=2,BP=BP′,A′P′=AP,
∴△BPP′是等边三角形,
∴BP=PP′,∠BPP′=∠BP′P=60°,
∵∠APC=∠CPB=∠BPA=120°,
∴∠CPB+∠BPP′=∠BP′A′+∠BP′P=120°+60°=180°,
∴C、P、A′、P′四点共线,
在Rt△A′BC中,A′C===,
∴PA+PB+PC=A′P′+PP′+PC=A′C=.
2022年苏教版中考数学压轴题经典模型教案专题22 新定义综合问题: 这是一份2022年苏教版中考数学压轴题经典模型教案专题22 新定义综合问题,共77页。
2022年苏教版中考数学压轴题经典模型教案专题20 函数与相似综合问题: 这是一份2022年苏教版中考数学压轴题经典模型教案专题20 函数与相似综合问题
2022年苏教版中考数学压轴题经典模型教案专题18 函数与动点综合问题: 这是一份2022年苏教版中考数学压轴题经典模型教案专题18 函数与动点综合问题,共82页。