押第8题 简单函数与运用-备战2022年中考数学临考题号押题(广东专用)
展开押第8题 简单函数与运用
广东对函数知识的考查有一定要求,在选择题中一般在8~10题中进行考查,有一定的难度,要求考生熟练掌握与函数有关的基础知识外,还要熟悉函数图像,函数解析式,函数的一般运用.纵观近几年的中考试题,主要考查了函数图像与性质,坐标特征。
1.(2021广东)把函数y=(x﹣1)2+2的图象向右平移1个单位长度,平移后图象的函数解析式为
A.y=x2+2 B.y=(x﹣1)2+1
C.y=(x﹣2)2+2 D.y=(x﹣1)2+3
【分析】左加右减,向右x变为x-1,y=(x﹣1﹣1)2+2y=(x﹣2)2+2 .
【解答】函数y=(x﹣1)2+2的图象向右平移1个单位长度,平移后图象的函数解析式为y=(x﹣1﹣1)2+2y=
(x﹣2)2+2
故选:C
2.(2021广东)如题10图,抛物线y=ax2+bx+c的对称轴是直线x=1.下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0.其中正确的结论有
A.4个 B.3个 C.2个 D.1
【分析】根据二次函数的图象性质进行解答.
【解答】由a<0,b>0,c>0可得①错误;由△>0可得②正确;由x=-2时,y<0可得③正确.当x=1时,a+b+c>0,当x=-2时,4a-2b+c>0即-4a+2b-c>0,两式相减得5a-b+2c>0,即5a+2c>b,∵b>0,∴5a+b+2c>0可得④正确.
故选:B
3.(2021深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是( )
A.abc>0 B.4ac-b2<0
C.3a+c>0 D.ax2+bx+c=n+1无实数根
【分析】这题考察是二次函数综合内容
【解答】由图可知二次函数对称轴为x=-1,则根据对称性可得函数与x轴的另一交点坐标为(1,0),代入
解析式y=ax2+bx+c可得b=2a,c=-3a,其中a<0。b<0,c>0,3a+c=0,abc>0;二次函数与x轴有两个交点,,故B项错误;D项可理解为二次函数与直线y=n+1无交点,显然成立。
故选B。
4.(2019•广州)若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是( )
A.y3<y2<y1 B.y2<y1<y3 C.y1<y3<y2 D.y1<y2<y3权所有
【分析】根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.
【解答】解:∵点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=的图象上,
∴y1==﹣6,y2==3,y3==2,
又∵﹣6<2<3,
∴y1<y3<y2.
故选:C.
5.(2019深圳)已知的图象如图,则和的图象为
A. B.
C. D.
【分析】根据二次函数的图象可以得到,,,由此可以判定经过一、二、四象限,双曲线在二、四象限.
【解答】解:根据二次函数的图象,
可得,,,
过一、二、四象限,
双曲线在二、四象限,
是正确的.
故选:.
1.(佛山市大沥镇一模)抛物线y=(x+2)2+1的对称轴是( )
A. 直线x=-1 B. 直线x=1 C. 直线x=2 D. 直线x=-2
【分析】直接利用顶点式的特殊性可求对称轴.
【解答】∵抛物线y=(x+2)2+1的顶点坐标是:(-2,1),
∴对称轴是:直线x=-2,
故选D.
2.(佛山市大沥镇一模)已知二次函数的图像如图所示,在下列个结论中:①;②;③;④. 正确的个数是( ).
A. 个 B. 个 C. 个 D. 个
【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,利用图象判断2所对应的y的值,根据对称轴和与x轴交点个数,进而对所得结论进行判断.
【解答】解:①∵由函数图象开口向下可知,a<0,由函数的对称轴x=﹣ >﹣1,故 <1,
∵a<0,
∴b>2a,
∴2a﹣b<0,①正确;
②∵a<0,对称轴在y轴左侧,a,b同号,图象与y轴交于负半轴,则c<0,故abc<0;②正确;
③∵图象与x轴无交点,
∴b2﹣4ac<0,③正确;
④由图象可知,当x=2时,y=4a+2b+c<0,④错误;
故正确的有①②③,共3个.
故选:C.
3.(2021佛山市禅城区一模)点A(x1,y1),B(x2,y2)都在反比例函数y=的图象上,且x1<x2<0,则y1,y2的大小关系是( )
A.y2>y1>0 B.y1>y2>0 C.0>y2>y1 D.0>y1>y2
【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0即可得出结论.
【解答】解:∵反比例函数y=中k=﹣3<0,
∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大.
∵x1<x2<0,
∴A、B都在第二象限,
∴y2>y1>0.
故选:A.
4.(2021佛山市禅城区一模)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),顶点坐标为(1,m),与y轴的交点在(0,﹣4),(0,﹣3)之间(包含端点),下列结论:①a+b+c<0;②1≤a≤;③关于x的方程ax2+bx+c+1﹣m=0没有实数根.其中正确的结论有( )
A.0个 B.1个 C.2个 D.3个
【分析】根据函数的图象和性质逐个求解即可.
【解答】解:①若a+b+c<0,则4a+2b+c<0;
当x=2时,y=4a+2b+c<0,故①正确,符合题意;
②当x=﹣1时,y=a﹣b+c=0,则c=﹣a+b,
由﹣4≤c≤﹣3,得﹣4≤﹣a+b≤﹣3,
图象的对称轴为x=1,故b=﹣2a,得﹣4≤﹣3a≤﹣3,
故1≤a≤正确,符合题意;
③y=ax2+bx+c的顶点为(1,m),即当x=1时y有最小值m.
而y=m﹣1和y=ax2+bx+c无交点,即方程ax2+bx+c=m﹣1无解,
∴关于x的方程ax2+bx+c+1﹣m=0没有实数根,故③正确,符合题意.
故选:D.
5.(2021深圳市南山区一模)如图,抛物线y=ax2+bx+c经过点(﹣1,0),与y轴交于(0,2),抛物线的对称轴为直线x=1,则下列结论中:①a+c=b;②方程ax2+bx+c=0的解为﹣1和3;③2a+b=0;④c﹣a>2,其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴x=1计算2a+b与偶的关系,进而对所得结论进行判断.
【解答】解:①∵抛物线y=ax2+bx+c经过点(﹣1,0),
∴a﹣b+c=0,
∴a+c=b,故本选项正确;
②由对称轴为x=1,一个交点为(﹣1,0),
∴另一个交点为(3,0),
∴方程ax2+bx+c=0的解为﹣1和3,故本选项正确;
③由对称轴为x=1,
∴﹣=1,
∴b=﹣2a,则2a+b=0,故本选项正确;
④∵抛物线y=ax2+bx+c与y轴交于(0,2),
∴c=2,
∵a<0,
∴c﹣a>2,故本选项正确;
故选:D.
6.(汕头市金平区一模)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,点B位于(4,0)、(5,0)之间,与y轴交于点C,对称轴为直线x=2,直线y=﹣x+c与抛物线y=ax2+bx+c交于C,D两点,D点在x轴上方且横坐标小于5,则下列结论:①4a+b+c>0;②a﹣b+c<0;③m(am+b)<4a+2b(其中m为任意实数);④a<﹣1,其中正确的是( )
A.①②③④ B.①②③ C.①②④ D.①③④
【分析】利用抛物线与y轴的交点位置得到c>0,利用对称轴方程得到b=﹣4a,则4a+2b+c=c>0,于是可对①进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣1,0)右侧,则当x=﹣1时,y<0,于是可对②进行判断;根据二次函数的性质得到x=2时,二次函数有最大值,则am2+bm+c≤4a+2b+c,即,m(am+b)≤4a+2b,于是可对③进行判断;由于直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴上方且横坐标小于5,利用函数图象得x=5时,一次函数值比二次函数值大,即25a+5b+c<﹣5+c,然后把b=﹣4代入解a的不等式,则可对④进行判断;
【解答】解:∵抛物线与y轴的交点在x轴上方,
∴c>0,
∵抛物线的对称轴为直线x=2∴b=﹣4a,
∴4a+b+c=4a﹣4a+c=c>0,所以①正确;
∵抛物线的对称轴为直线x=2,与x轴的一个交点B位于(4,0)、(5,0)之间,
∴抛物线与x轴的另一个交点位于(0,0)、(﹣1,0)之间,
即当x=﹣1时,y<0,也就是a﹣b+c<0,因此②正确;
∵对称轴为x=2,
∴x=2时的函数值大于或等于x=m时函数值,即,当x=2时,函数值最大,
∴am2+bm+c≤4a+2b+c,
即,m(am+b)≤4a+2b,因此③不正确;
∵直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴上方且横坐标小于5,
∴x=5时,一次函数值比二次函数值大,
即25a+5b+c<﹣5+c,
而b=﹣4a,
∴25a﹣20a<﹣5,解得a<﹣1,因此④正确;
综上所述,正确的结论有①②④,
故选:C.
(限时:20分钟)
1.(2021•内江)将直线y=﹣2x﹣1向上平移两个单位,平移后的直线所对应的函数关系式为( )
A.y=﹣2x﹣5 B.y=﹣2x﹣3 C.y=﹣2x+1 D.y=﹣2x+3
【分析】根据函数图象向上平移加,向下平移减,可得答案.
【解析】直线y=﹣2x﹣1向上平移两个单位,所得的直线是y=﹣2x+1,
故选:C.
2.(2021•乐山)直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b≤2的解集是( )
A.x≤﹣2 B.x≤﹣4 C.x≥﹣2 D.x≥﹣4
【分析】根据待定系数法求得直线的解析式,然后求得函数y=2时的自变量的值,根据图象即可求得.
【解析】∵直线y=kx+b与x轴交于点(2,0),与y轴交于点(0,1),
∴,解得
∴直线为y1,
当y=2时,21,解得x=﹣2,
由图象可知:不等式kx+b≤2的解集是x≥﹣2,
故选:C.
3.(2021•安徽)已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是( )
A.(﹣1,2) B.(1,﹣2) C.(2,3) D.(3,4)
【分析】由点A的坐标,利用一次函数图象上点的坐标特征求出k值,结合y随x的增大而减小即可确定结论.
【解析】A、当点A的坐标为(﹣1,2)时,﹣k+3=3,
解得:k=1>0,
∴y随x的增大而增大,选项A不符合题意;
B、当点A的坐标为(1,﹣2)时,k+3=﹣2,
解得:k=﹣5<0,
∴y随x的增大而减小,选项B符合题意;
C、当点A的坐标为(2,3)时,2k+3=3,
解得:k=0,选项C不符合题意;
D、当点A的坐标为(3,4)时,3k+3=4,
解得:k0,
∴y随x的增大而增大,选项D不符合题意.
故选:B.
4.(2021•嘉兴)一次函数y=2x﹣1的图象大致是( )
A. B.
C. D.
【分析】根据一次函数的性质,判断出k和b的符号即可解答.
【解析】由题意知,k=2>0,b=﹣1<0时,函数图象经过一、三、四象限.
故选:B.
5.(2021•天津)若点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数的图象上,则x1,x2,x3的大小关系是( )
A.x1<x2<x3 B.x2<x3<x1 C.x1<x3<x2 D.x3<x1<x2
【分析】将点A(x1,﹣5),B(x2,2),C(x3,5)分别代入反比例函数,求得x1,x2,x3的值后,再来比较一下它们的大小.
【解析】∵点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数的图象上,
∴﹣5,即x1=﹣2,
2,即x2=5;
5,即x3=2,
∵﹣2<2<5,
∴x1<x3<x2;
故选:C.
6.(2021•河南)若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数的图象上,则y1,y2,y3的大小关系是( )
A.y1>y2>y3 B.y2>y3>y1 C.y1>y3>y2 D.y3>y2>y1
【分析】根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.
【解析】∵点A(﹣1,y1)、B(2,y2)、C(3,y3)在反比例函数y的图象上,
∴y16,y23,y32,
又∵﹣3<﹣2<6,
∴y1>y3>y2.
故选:C.
7.(2021•德州)函数和y=﹣kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是( )
A. B.
C. D.
【分析】根据题目中函数的解析式,利用一次函数和反比例函数图象的特点解答本题.
【解析】在函数和y=﹣kx+2(k≠0)中,
当k>0时,函数的图象在第一、三象限,函数y=﹣kx+2的图象在第一、二、四象限,故选项A、B错误,选项D正确,
当k<0时,函数的图象在第二、四象限,函数y=﹣kx+2的图象在第一、二、三象限,故选项C错误,
故选:D.
8.(2021•内江)如图,点A是反比例函数图象上的一点,过点A作AC⊥x轴,垂足为点C,D为AC的中点,若△AOD的面积为1,则k的值为( )
A. B. C.3 D.4
【分析】根据题意可知△AOC的面积为2,然后根据反比例函数系数k的几何意义即可求得k的值.
【解析】∵AC⊥x轴,垂足为点C,D为AC的中点,若△AOD的面积为1,
∴△AOC的面积为2,
∵S△AOC|k|=2,且反比例函数y图象在第一象限,
∴k=4,
故选:D.
9.(2021•青岛)已知在同一直角坐标系中,二次函数y=ax2+bx和反比例函数y=的图象如图所示,则一次函数y=x﹣b的图象可能是( )
A. B.
C. D.
【分析】根据反比例函数图象和二次函数图象经过的象限,即可得出a<0、b>0、c>0,由此即可得出0,﹣b<0,即可得出一次函数yx﹣b的图象经过二三四象限,再对照四个选项中的图象即可得出结论.
【解析】观察函数图象可知:a<0,b>0,c>0,
∴0,﹣b<0,
∴一次函数yx﹣b的图象经过二三四象限.
故选:B.
10.(2021•襄阳)二次函数y=ax2+bx+c的图象如图所示,下列结论:
①ac<0;②3a+c=0;③4ac﹣b2<0;④当x>﹣1时,y随x的增大而减小.
其中正确的有( )
A.4个 B.3个 C.2个 D.1个
【分析】二次函数图象与系数的关系以及二次函数的性质,逐一分析判断即可.
【解析】①∵抛物线开口向上,且与y轴交于负半轴,
∴a>0,c<0,
∴ac<0,结论①正确;
②∵抛物线对称轴为直线x=1,
∴1,
∴b=﹣2a,
∵抛物线经过点(﹣1,0),
∴a﹣b+c=0,
∴a+2a+c=0,即3a+c=0,结论②正确;
③∵抛物线与x轴由两个交点,
∴b2﹣4ac>0,即4ac﹣b2<0,结论③正确;
④∵抛物线开口向上,且抛物线对称轴为直线x=1,
∴当x<1时,y随x的增大而减小,结论④错误;
故选:B.
11.(2021•鄂州)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)和B,与y轴交于点C.下列结论:①abc<0,②2a+b<0,③4a﹣2b+c>0,④3a+c>0,其中正确的结论个数为( )
A.1个 B.2个 C.3个 D.4个
【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴求出2a与b的关系.
【解析】①∵由抛物线的开口向上知a>0,
∵对称轴位于y轴的右侧,
∴b<0.
∵抛物线与y轴交于负半轴,
∴c<0,
∴abc>0;
故错误;
②对称轴为x1,得2a>﹣b,即2a+b>0,
故错误;
③如图,当x=﹣2时,y>0,4a﹣2b+c>0,
故正确;
④∵当x=﹣1时,y=0,
∴0=a﹣b+c<a+2a+c=3a+c,即3a+c>0.
故正确.
综上所述,有2个结论正确.
故选:B.
12.(2021•菏泽)一次函数y=acx+b与二次函数y=ax2+bx+c在同一平面直角坐标系中的图象可能是( )
A. B.
C. D.
【分析】先由二二次函数y=ax2+bx+c的图象得到字母系数的正负,再与一次函数y=acx+b的图象相比较看是否一致.
【解析】A、由抛物线可知,a>0,b<0,c>0,则ac>0,由直线可知,ac>0,b>0,故本选项错误;
B、由抛物线可知,a>0,b>0,c>0,则ac>0,由直线可知,ac>0,b>0,故本选项正确;
C、由抛物线可知,a<0,b>0,c>0,则ac<0,由直线可知,ac<0,b<0,故本选项错误;
D、由抛物线可知,a<0,b<0,c>0,则ac<0,由直线可知,ac>0,b>0,故本选项错误.
故选:B.
13.(2021•绥化)将抛物线y=2(x﹣3)2+2向左平移3个单位长度,再向下平移2个单位长度,得到抛物线的解析式是( )
A.y=2(x﹣6)2 B.y=2(x﹣6)2+4
C.y=2x2 D.y=2x2+4
【分析】根据“左加右减、上加下减”的原则进行解答即可.
【解析】将将抛物线y=2(x﹣3)2+2向左平移3个单位长度所得抛物线解析式为:y=2(x﹣3+3)2+2,即y=2x2+2;
再向下平移2个单位为:y=2x2+2﹣2,即y=2x2.
故选:C.
14.(2021•成都)关于二次函数y=x2+2x﹣8,下列说法正确的是( )
A.图象的对称轴在y轴的右侧
B.图象与y轴的交点坐标为(0,8)
C.图象与x轴的交点坐标为(﹣2,0)和(4,0)
D.y的最小值为﹣9
【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.
【解析】∵二次函数y=x2+2x﹣8=(x+1)2﹣9=(x+4)(x﹣2),
∴该函数的对称轴是直线x=﹣1,在y轴的左侧,故选项A错误;
当x=0时,y=﹣8,即该函数与y轴交于点(0,﹣8),故选项B错误;
当y=0时,x=2或x=﹣4,即图象与x轴的交点坐标为(2,0)和(﹣4,0),故选项C错误;
当x=﹣1时,该函数取得最小值y=﹣9,故选项D正确;
故选:D.
押广东卷10题(函数与几何)-备战 中考数学临考题号押题(广东卷): 这是一份押广东卷10题(函数与几何)-备战 中考数学临考题号押题(广东卷),文件包含押广东卷10题函数与几何解析版docx、押广东卷10题函数与几何原卷版docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。
押广东卷22题(方程运用与最大利润)-备战 中考数学临考题号押题(广东卷): 这是一份押广东卷22题(方程运用与最大利润)-备战 中考数学临考题号押题(广东卷),文件包含押广东卷22题方程运用与最大利润解析版-备战中考数学临考题号押题广东卷docx、押广东卷22题方程运用与最大利润原卷版-备战中考数学临考题号押题广东卷docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
押第23题 方程与不等式运用-备战2022年中考数学临考题号押题(广东专用): 这是一份押第23题 方程与不等式运用-备战2022年中考数学临考题号押题(广东专用),文件包含押第23题方程与不等式运用-备战2022年中考数学临考题号押题广东专用解析版doc、押第23题方程与不等式运用-备战2022年中考数学临考题号押题广东专用原卷版doc等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。