押第24题 反比例函数与几何综合-备战2022年中考数学临考题号押题(广东专用)
展开押第24题 反比例函数与几何综合
广东中考对反比例函数知识的考查要求高,一般是以8分或10分简答题的形式进行考查,一般难度大,除了要求考生熟练掌握与反比例函数有关的基础知识,函数图像性质,还需要掌握几何证明的相关知识.纵观近3年的中考试题,主要考查以下两个方面:一是考查反比例的解析式,面积,与一次函数的综合运用.二是考查几何证明与计算.
1.(2021广东)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A、C.反比例函数y=(x>0)的图象经过OB的中点M,与AB、BC分别交于点D、E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF、BG.
(1)填空:k=________;
(2)求△BDF的面积;
(3)求证:四边形BDFG为平行四边形.
【解答】
(1)设点B(s,t),st=8,则点M(s,t),
则k=s•t=st=2,
故答案为2;
(2)解:过点D作DP⊥x轴交于点P
由题意得,S矩形OBC=AB•AO=k=8,S矩形ADPO=AD•AO=k=2
∴=即BD=AB
∵S△BDF=BD•AO=AB•AO=3
(3)连接OE
由题意得S△OEC=OC•CE=1,S△OBC=OC•CB=4
∴即CE=BE
∵∠DEB=∠CEF,∠DBE=∠FCE
∴△DEB∽△FEC
∴CF=BD
∵OC=GC,AB=OC
∴FG=AB-CF=BD-BD=BD
∵AB∥OG
∴BD∥FG
∴四边形BDFG为平行四边形
2.(2019广东)如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(﹣1,4),点B的坐标为(4,n).
(1)根据图象,直接写出满足kx+b>的x的取值范围;
(2)求这两个函数的表达式;
(3)点P在线段AB上,且S△AOP:S△BOP=1:2,求点P的坐标.
【分析】(1)利用抛物线解析式求得点A、B、D的坐标;
(2)欲证明四边形BFCE是平行四边形,只需推知EC∥BF且EC=BF即可;
(3)①利用相似三角形的对应边成比例求得点P的横坐标,没有指明相似三角形的对应边(角),需要分类讨论;
②根据①的结果即可得到结论.
【解答】解:(1)令x2+x﹣=0,
解得x1=1,x2=﹣7.
∴A(1,0),B(﹣7,0).
由y=x2+x﹣=(x+3)2﹣2得,D(﹣3,﹣2);
(2)证明:∵DD1⊥x轴于点D1,
∴∠COF=∠DD1F=90°,
∵∠D1FD=∠CFO,
∴△DD1F∽△COF,
∴=,
∵D(﹣3,﹣2),
∴D1D=2,OD=3,
∴D1F=2,
∴=,
∴OC=,
∴CA=CF=FA=2,
∴△ACF是等边三角形,
∴∠AFC=∠ACF,
∵△CAD绕点C顺时针旋转得到△CFE,
∴∠ECF=∠AFC=60°,
∴EC∥BF,
∵EC=DC==6,
∵BF=6,
∴EC=BF,
∴四边形BFCE是平行四边形;
(3)∵点P是抛物线上一动点,
∴设P点(x,x2+x﹣),
①当点P在B点的左侧时,
∵△PAM与△DD1A相似,
∴或=,
∴=或=,
解得:x1=1(不合题意舍去),x2=﹣11或x1=1(不合题意舍去)x2=﹣;
当点P在A点的右侧时,
∵△PAM与△DD1A相似,
∴=或=,
∴=或=,
解得:x1=1(不合题意舍去),x2=﹣3(不合题意舍去)或x1=1(不合题意舍去),x2=﹣(不合题意舍去);
当点P在AB之间时,
∵△PAM与△DD1A相似,
∴=或=,
∴=或=,
解得:x1=1(不合题意舍去),x2=﹣3(不合题意舍去)或x1=1(不合题意舍去),x2=﹣;
综上所述,点P的横坐标为﹣11或﹣或﹣;
②由①得,这样的点P共有3个.
3.(2019广州)如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(﹣1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=的图象相交于A,P两点.
(1)求m,n的值与点A的坐标;
(2)求证:△CPD∽△AEO;
(3)求sin∠CDB的值.
【分析】(1)根据点P的坐标,利用待定系数法可求出m,n的值,联立正、反比例函数解析式成方程组,通过解方程组可求出点A的坐标(利用正、反比例函数图象的对称性结合点P的坐标找出点A的坐标亦可);
(2)由菱形的性质可得出AC⊥BD,AB∥CD,利用平行线的性质可得出∠DCP=∠OAE,结合AB⊥x轴可得出∠AEO=∠CPD=90°,进而即可证出△CPD∽△AEO;
(3)由点A的坐标可得出AE,OE,AO的长,由相似三角形的性质可得出∠CDP=∠AOE,再利用正弦的定义即可求出sin∠CDB的值.
【解答】(1)解:将点P(﹣1,2)代入y=mx,得:2=﹣m,
解得:m=﹣2,
∴正比例函数解析式为y=﹣2x;
将点P(﹣1,2)代入y=,得:2=﹣(n﹣3),
解得:n=1,
∴反比例函数解析式为y=﹣.
联立正、反比例函数解析式成方程组,得:,
解得:,,
∴点A的坐标为(1,﹣2).
(2)证明:∵四边形ABCD是菱形,
∴AC⊥BD,AB∥CD,
∴∠DCP=∠BAP,即∠DCP=∠OAE.
∵AB⊥x轴,
∴∠AEO=∠CPD=90°,
∴△CPD∽△AEO.
(3)解:∵点A的坐标为(1,﹣2),
∴AE=2,OE=1,AO==.
∵△CPD∽△AEO,
∴∠CDP=∠AOE,
∴sin∠CDB=sin∠AOE===.
1.(2021佛山市禅城区一模)如图,反比例函数y=与一次函数y=﹣x﹣(k+1)的图象在第二象限的交点为A,在第四象限的交点为C,直线AO(O为坐标原点)与函数y=的图象交于另一点B.过点A作y轴的平行线,过点B作x轴的平行线,两直线相交于点E,△AEB的面积为6.
(1)求反比例函数的解析式;
(2)求点A,C的坐标和△ABC的面积.
【分析】(1)由题意得,点A与点B关于原点对称,即OA=OB,从而得出=,进一步求出三角形AOM的面积,求出k的值即可;
(2)求出一次函数y=﹣x+2与y轴的交点N坐标,根据S△AOC=S△CON+S△AON 计算结果即可.
【解答】解:(1)设AE交x轴于M.由题意得,点A与点B关于原点对称,即OA=OB,
∵OM∥EB,
∴∠AMO=∠AEB,∠AOM=∠ABE,
∴△AMO∽△AEB,
∴=()2=,
∵S△ABE=6,
∴S△AOM=S△ABE=×6=,
∵S△AOM=|k|,k<0,
∴|k|=,
解得k=﹣3,
∴反比例函数的关系式为y=﹣;
(2)由k=﹣3可得一次函数y=﹣x+2,
由题意得,,解得,
∵A在第二象限,点C在第四象限,
∴点A(﹣1,3),点C(3,﹣1),
∵A与B关于原点O中心对称,
∴B(1,﹣3),
∴S△ABC=6×4+×2×6+×2×2+×4×4=8.
2. (佛山市大沥镇一模)如图,在平面直角坐标系中,矩形的顶点的坐标为,、分别落在落在轴和轴上,是矩形的对角线. 将绕点逆时针旋转,使点落在轴上,得到,与相交于点,反比例函数的图像经过点,交于点.
(1)填空:的值等于 ;
(2)连接,图中是否存在与相似的三角形?若存在,请找一个,并进行证明;若不存在,请说明理由;
(3)在线段上是否存在这样的点,使得是等腰三角形. 请直接写出的长.
【分析】(1)证明△COF∽△AOB,则,求得:点F的坐标为(1,2),即可求解;
(2)△COF∽△BFG;△AOB∽△BFG;△ODE∽△BFG;△CBO∽△BFG.证△OAB∽△BFG:,,即可求解;
(3)分GF=PF、PF=PG、GF=PG三种情况,分别求解即可.
【详解】解:(1)∵四边形OABC为矩形,点B的坐标为(4,2),
∴∠OCB=∠OAB=∠ABC=90°,OC=AB=2,OA=BC=4,
∵△ODE是△OAB旋转得到的,即:△ODE≌△OAB,
∴∠COF=∠AOB,
∴△COF∽△AOB,
∴,
∴=,
∴CF=1,
∴点F的坐标为(1,2),
∵y=(x>0)的图象经过点F,
∴2=,得k=2;
(2)存在与△BFG相似的三角形,比如:△AOB∽△BFG.
下面对△OAB∽△BFG进行证明:
∵点G在AB上,
∴点G横坐标为4,
对于y=,当x=4,得y=,
∴点G的坐标为(4,),
∴AG=,
∵BC=OA=4,CF=1,AB=2,
∴BF=BC﹣CF=3,
BG=AB﹣AG=,
∴,,
∴,
∵∠OAB=∠FBG=90°,
∴△OAB∽△FBG.
(3)设点P(m,0),而点F(1,2)、点G(4,),
则FG2=9+=,PF2=(m﹣1)2+4,PG2=(m﹣4)2+,
当GF=PF时,即=(m﹣1)2+4,解得:m=(舍去负值);
当PF=PG时,同理可得:m=;
当GF=PG时,同理可得:m=4﹣;
综上,点P的坐标为(4﹣,0)或(,0)或(,0),
∴OP=4-或或.
3.(2021惠州市一模)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于点和.
(1)求一次函数和反比例函数的表达式;
(2)请直接写出时,的取值范围;
(3)过点作轴,于点,点是直线上一点,若,求点的坐标.
【分析】(1)利用待定系数法求出,求出点的坐标,再利用待定系数法求出一次函数解析式;
(2)利用数形结合思想解答;
(3)根据直角三角形的性质得到,根据正切的定义求出,分点在点的左侧、点在点的右侧两种情况解答.
【解答】解:(1)点在反比例函数的图象上,
,
反比例函数的解析式为,
点在反比例函数的图象上,
,
则点的坐标为,
由题意得,,
解得,,
则一次函数解析式为:;
(2)由函数图象可知,当或时,;
(3),,
,
由题意得,,
在中,,即,
解得,,
当点在点的左侧时,点的坐标为,,
当点在点的右侧时,点的坐标为,,
当点的坐标为,或,时,.
(限时:30分钟)
1.(2021•襄阳)如图,反比例函数y1(x>0)和一次函数y2=kx+b的图象都经过点A(1,4)和点B(n,2).
(1)m= ,n= ;
(2)求一次函数的解析式,并直接写出y1<y2时x的取值范围;
(3)若点P是反比例函数y1(x>0)的图象上一点,过点P作PM⊥x轴,垂足为M,则△POM的面积为 .
【分析】(1)把A的坐标代入反比例函数的解析式求出m,得出反比例函数的解析式,把B的坐标代入反比例函数的解析式,能求出n,即可得出B的坐标;
(2)分别把A、B的坐标代入一次函数的解析式得出方程组,求出方程组的解,即可得出一次函数的解析式;根据图象求得y1<y2时x的取值范围;
(3)根据反比例函数系数k的几何意义即可求得.
【解析】(1)∵把A(1,4)代入y1(x>0)得:m=1×4=4,
∴y,
∵把B(n,2)代入y得:2,
解得n=2;
故答案为4,2;
(2)把A(1,4)、B(2,2)代入y2=kx+b得:,
解得:k=﹣2,b=6,
即一次函数的解析式是y=﹣2x+6.
由图象可知:y1<y2时x的取值范围是1<x<2;
(3)∵点P是反比例函数y1(x>0)的图象上一点,过点P作PM⊥x轴,垂足为M,
∴S△POM|m|2,
故答案为2.
2.(2021•连云港)如图,在平面直角坐标系xOy中,反比例函数y(x>0)的图象经过点A(4,),点B在y轴的负半轴上,AB交x轴于点C,C为线段AB的中点.
(1)m= ,点C的坐标为 ;
(2)若点D为线段AB上的一个动点,过点D作DE∥y轴,交反比例函数图象于点E,求△ODE面积的最大值.
【分析】(1)根据待定系数法即可求得m的值,根据A点的坐标即可求得C的坐标;
(2)根据待定系数法求得直线AB的解析式,设出D、E的坐标,然后根据三角形面积公式得到S△ODE(x﹣1)2,由二次函数的性质即可求得结论.
【解析】(1)∵反比例函数y(x>0)的图象经过点A(4,),
∴m6,
∵AB交x轴于点C,C为线段AB的中点.
∴C(2,0);
故答案为6,(2,0);
(2)设直线AB的解析式为y=kx+b,
把A(4,),C(2,0)代入得,解得,
∴直线AB的解析式为yx;
∵点D为线段AB上的一个动点,
∴设D(x,x)(0<x≤4),
∵DE∥y轴,
∴E(x,),
∴S△ODEx•(x)x2x+3(x﹣1)2,
∴当x=1时,△ODE的面积的最大值为.
3.(2021•成都)在平面直角坐标系xOy中,反比例函数y(x>0)的图象经过点A(3,4),过点A的直线y=kx+b与x轴、y轴分别交于B,C两点.
(1)求反比例函数的表达式;
(2)若△AOB的面积为△BOC的面积的2倍,求此直线的函数表达式.
【分析】(1)把A(3,4)代入y(x>0)即可得到结论;
(2)根据题意得到B(,0),C(0,b),根据三角形的面积公式列方程即可得到结论.
【解析】(1)∵反比例函数y(x>0)的图象经过点A(3,4),
∴k=3×4=12,
∴反比例函数的表达式为y;
(2)∵直线y=kx+b过点A,
∴3k+b=4,
∵过点A的直线y=kx+b与x轴、y轴分别交于B,C两点,
∴B(,0),C(0,b),
∵△AOB的面积为△BOC的面积的2倍,
∴4×||=2||×|b|,
∴b=±2,
当b=2时,k,
当b=﹣2时,k=2,
∴直线的函数表达式为:yx+2,y=2x﹣2.
4.(2021•遂宁)如图,在平面直角坐标系中,已知点A的坐标为(0,2),点B的坐标为(1,0),连结AB,以AB为边在第一象限内作正方形ABCD,直线BD交双曲线y(k≠0)于D、E两点,连结CE,交x轴于点F.
(1)求双曲线y(k≠0)和直线DE的解析式.
(2)求△DEC的面积.
【分析】(1)作DM⊥y轴于M,通过证得△AOB≌△DMA(AAS),求得D的坐标,然后根据待定系数法即可求得双曲线y(k≠0)和直线DE的解析式.
(2)解析式联立求得E的坐标,然后根据勾股定理求得DE和DB,进而求得CN的长,即可根据三角形面积公式求得△DEC的面积.
【解析】∵点A的坐标为(0,2),点B的坐标为(1,0),
∴OA=2,OB=1,
作DM⊥y轴于M,
∵四边形ABCD是正方形,
∴∠BAD=90°,AB=AD,
∴∠OAB+∠DAM=90°,
∵∠OAB+∠ABO=90°,
∴∠DAM=∠ABO,
在△AOB和△DMA中
,
∴△AOB≌△DMA(AAS),
∴AM=OB=1,DM=OA=2,
∴D(2,3),
∵双曲线y═(k≠0)经过D点,
∴k=2×3=6,
∴双曲线为y,
设直线DE的解析式为y=mx+n,
把B(1,0),D(2,3)代入得,解得,
∴直线DE的解析式为y=3x﹣3;
(2)连接AC,交BD于N,
∵四边形ABCD是正方形,
∴BD垂直平分AC,AC=BD,
解得或,
∴E(﹣1,﹣6),
∵B(1,0),D(2,3),
∴DE3,DB,
∴CNBD,
∴S△DECDE•CN.
5.(2021•江西)如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.
(1)求反比例函数的解析式;
(2)求∠EOD的度数.
【分析】(1)根据题意求得A(2,2),然后代入y(x>0),求得k的值,即可求得反比例函数的解析式;
(2)根据AB=2OA时,点E恰为AB的中点,得出OA=AE=BE,根据直角三角形斜边中线的性质得出CE=AE=BE,根据等腰三角形的性质越久三角形外角的性质即可得出∠AOE=2∠EOD,从而求得∠EOD=15°.
【解析】(1)∵直线AC⊥x轴,垂足为D,∠AOD=45°,
∴△AOD是等腰直角三角形,
∵OA=2,
∴OD=AD=2,
∴A(2,2),
∵顶点A在反比例函数y(x>0)的图象上,
∴k=2×2=4,
∴反比例函数的解析式为y;
(2)∵AB=2OA,点E恰为AB的中点,
∴OA=AE,
∵Rt△ABC中,∠ACB=90°,
∴CE=AE=BE,
∴∠AOE=∠AEO,∠ECB=∠EBC,
∵∠AEO=∠ECB+∠EBC=2∠EBC,
∵BC∥x轴,
∴∠EOD=∠ECB,
∴∠AOE=2∠EOD,
∵∠AOE=45°,
∴∠EOD=15°.
6.(2021•菏泽)如图,一次函数y=kx+b的图象与反比例函数y的图象相交于A(1,2),B(n,﹣1)两点.
(1)求一次函数和反比例函数的表达式;
(2)直线AB交x轴于点C,点P是x轴上的点,若△ACP的面积是4,求点P的坐标.
【分析】(1)先根据点A坐标求出反比例函数解析式,再求出点B的坐标,继而根据点A、B坐标可得直线解析式;
(2)先根据直线解析式求出点C的坐标,再设P(m,0),知PC=|﹣1﹣m|,根据S△ACP•PC•yA=4求出m的值即可得出答案.
【解析】(1)将点A(1,2)代入y,得:m=2,
∴y,
当y=﹣1时,x=﹣2,
∴B(﹣2,﹣1),
将A(1,2)、B(﹣2,﹣1)代入y=kx+b,
得:,
解得,
∴y=x+1;
∴一次函数解析式为y=x+1,反比例函数解析式为y;
(2)在y=x+1中,当y=0时,x+1=0,
解得x=﹣1,
∴C(﹣1,0),
设P(m,0),
则PC=|﹣1﹣m|,
∵S△ACP•PC•yA=4,
∴|﹣1﹣m|×2=4,
解得m=3或m=﹣5,
∴点P的坐标为(3,0)或(﹣5,0).
7.(2021•泰安)如图,已知一次函数y=kx+b的图象与反比例函数y的图象交于点A(3,a),点B(14﹣2a,2).
(1)求反比例函数的表达式;
(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,求△ACD的面积.
【分析】(1)点A(3,a),点B(14﹣2a,2)在反比例函数上,则3×a=(14﹣2a)×2,即可求解;
(2)a=4,故点A、B的坐标分别为(3,4)、(6,2),求出一次函数的表达式为:yx+6,则点C(0,6),故OC=6,进而求解.
【解析】(1)∵点A(3,a),点B(14﹣2a,2)在反比例函数上,
∴3×a=(14﹣2a)×2,解得:a=4,则m=3×4=12,
故反比例函数的表达式为:y;
(2)∵a=4,故点A、B的坐标分别为(3,4)、(6,2),
设直线AB的表达式为:y=kx+b,则,解得,
故一次函数的表达式为:yx+6;
当x=0时,y=6,故点C(0,6),故OC=6,
而点D为点C关于原点O的对称点,则CD=2OC=12,
△ACD的面积CD•xA12×3=18.
8.(2021•枣庄)如图,在平面直角坐标系中,一次函数yx+5和y=﹣2x的图象相交于点A,反比例函数y的图象经过点A.
(1)求反比例函数的表达式;
(2)设一次函数yx+5的图象与反比例函数y的图象的另一个交点为B,连接OB,求△ABO的面积.
【分析】(1)联立yx+5①和y=﹣2x并解得:,故点A(﹣2.4),进而求解;
(2)S△AOB=S△AOC﹣S△BOCOC•AMOC•BN,即可求解.
【解析】(1)联立yx+5①和y=﹣2x并解得:,故点A(﹣2.4),
将点A的坐标代入反比例函数表达式得:4,解得:k=﹣8,
故反比例函数表达式为:y②;
(2)联立①②并解得:x=﹣2或﹣8,
当x=﹣8时,yx+5=1,故点B(﹣8,1),
设yx+5交x轴于点C(﹣10,0),过点A、B分别作x轴的垂线交于点M、N,
则S△AOB=S△AOC﹣S△BOCOC•AMOC•BN.
押广东卷10题(函数与几何)-备战 中考数学临考题号押题(广东卷): 这是一份押广东卷10题(函数与几何)-备战 中考数学临考题号押题(广东卷),文件包含押广东卷10题函数与几何解析版docx、押广东卷10题函数与几何原卷版docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。
押广东卷24题(几何综合)-备战 中考数学临考题号押题(广东卷): 这是一份押广东卷24题(几何综合)-备战 中考数学临考题号押题(广东卷),文件包含押广东卷24题几何综合解析版-备战中考数学临考题号押题广东卷docx、押广东卷24题几何综合原卷版-备战中考数学临考题号押题广东卷docx等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。
押第21题 计算与几何结合-备战2022年中考数学临考题号押题(广东专用): 这是一份押第21题 计算与几何结合-备战2022年中考数学临考题号押题(广东专用),文件包含押第21题计算与几何结合-备战2022年中考数学临考题号押题广东专用解析版doc、押第21题计算与几何结合-备战2022年中考数学临考题号押题广东专用原卷版doc等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。