2022年贵州省黔东南州中考数学模拟考试试卷(一)(word版含答案)
展开2022年贵州省黔东南州中考数学模拟考试试卷(一)
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.下列数中最大的数是( )
A. B.-2 C.0 D.3.14
2.京剧脸谱、剪纸等图案蕴含着简洁美对称美,下面选取的图片中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
3.年月份抗击新冠开始,党中央坚持“人民至上,生命至上”的指导思想,迅速组织科学家成功研发了疫苗.据统计,目前我国完成全程接种新冠疫苗的人数已达到.其中用科学记数法表示为( )
A. B. C. D.
4.如图,下面正三棱柱的左视图是( )
A. B. C. D.
5.2x4可以表示为( )
A.(2x2)2 B.x4•x4 C.2x5﹣x D.2x6÷x2
6.将一副三角板按如图所示方式摆放,使得,则等于( )
A. B. C. D.
7.如图,半径为10的扇形中,,为弧上一点,,,垂足分别为,.若,则图中阴影部分的面积为( )
A. B. C. D.
8.我国古代数学著作《增删算法统宗》记载“绳索量牵”问题;“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长1托;如果将绳索对半折后再去量竿,就比竿短1托.设绳索长x托,则符合题意的方程是( )
A.2x=(x-1)-1 B.2x=(x+1)+1
C.x=(x+1)+1 D.x=(x-1)-1
9.如图,在△ABC中,AB=AC,BD为△ABC的高.若∠CBD=20°,则∠BAC的度数是( )
A.30° B.40° C.50° D.60°
10.某大学毕业生为自主创业于2021年8月初向银行贷款360000元,与银行约定按“等额本金还款法”分10年进行还款,从2021年9月初开始,每个月月初还一次款,贷款月利率为,现因经营状况良好,准备向银行申请提前还款,计划于2026年8月初将剩余贷款全部一次还清,则该大学毕业生按现计划的所有还款数额比按原约定所有还款数额少( )(注:“等额本金还款法”是将本金平均分配到每一期进行偿还,每一期所还款金额由两部分组成.一部分为每期本金,即贷款本金除以还款期数;另一部分是利息,即贷款本金与已还本金总额的差乘以利率.1年按12个月计算)
A.18300元 B.22450元 C.27450元 D.28300元
二、填空题
11.因式分解:1-2a+a2=________.
12.把多项式﹣3x2+2xy2﹣x3y﹣1按x降幂排列是_____.
13.已知数据a,b,c的平均数为8,那么数据,,的平均数是____________.
14.一次函数y=(k﹣1)x+3中,函数值y随x的增大而减小,则k的取值范围是_____.
15.直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为_____.
16.如图,在△ABC中,D,E分别是边AB和BC上的点,若∠B=35°,∠C=56°.∠F=47°,则∠ADF的度数为_____.
17.如图,菱形ABCD边长为4,∠B=60°,,,连接EF交菱形的对角线AC于点O,则图中阴影部分面积等于________________.
18.如图,双曲线(k≠0)与直线y=mx(m≠0)交于A(1,2),B两点,将直线AB向下平移n个单位,平移后的直线与双曲线在第一象限的分支交于点C,连接AC并延长交x轴于点D.若点C恰好是线段AD的中点,则n的值为 _____.
19.关于x、y二元一次方程组的解满足,则k的值为______.
20.为求的值,可令,则,因此,所以。仿照以上推理计算:_________.
三、解答题
21.(1)计算:
(2)先化简,再求值:•(1+)÷,其中x=2
22.阅读材料后解决问题:2016年北京市春季学期初中开放性科学实践活动共上线1009个活动项目,资源单位为学生提供了三种预约方式:自主选课、团体约课、送课到校,其中少年创学院作为首批北京市开放性科学实践平台入选单位,在2015年下半年就已经分别为北京教育学院附属丰台实验学校分校、清华大学附属中学永丰学校、北京市八一中学、中国人民大学附属中学等多所学校提供送课到校服务,并以高质量的创客课堂赢得大家的认可.全市初一学生可以通过网络平台进行开放性科学实践平台选课,活动项目包括六个领域,A:自然与环境,B:健康与安全,C:结构与机械,D:电子与控制,E:数据与信息,F:能源与材料.某区为了解学生自主选课情况,随机抽取了初一部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:
(1)图1中m的值为 ;
(2)这次被调查的学生共有 人;
(3)请将统计图2补充完整;
(4)该区初一共有学生2700人,根据以上信息估计该区初一学生中选择电子与控制的人数约为 人.
23.知识阅读:我们知道,当>2时,代数式-2>0;当<2时,代数式-2<0;当=2时,代数式-2=0.
基本应用:
(1)当>2时,用“>,<,=”填空.
①+5___________0 ;②_________0
理解应用:
(2)当>1时,求代数式的值与0的大小.
灵活应用:
(3)当>2时,比较代数式与的大小关系.
24.某生态示范园积极响应政府提出的“践行生态有机理念,推动有机农业发展”经济政策,培育优良品种,种植了多种有机水果.某超市从该示范园第一次用300元购进甲种水果,300元购进乙种水果.乙种水果的进价是甲种水果进价的1.5倍,超市所进甲种水果比所进乙种水果多10kg.
(1)求甲、乙两种水果的进价分别是每千克多少元?
(2)第一次购进的水果很快销售完毕,为满足消费者需求,该超市准备再次购进甲,乙两种有机水果共100千克,其中甲种水果的质量不少于乙种水果质量的3倍.若甲种水果的售价为13元/千克,乙种水果的售价为20元/千克,超市购进两种有机水果各多少千克时第二次获得最大利润,最大利润是多少?
25.如图,在△ABC中,点O为BC边上一点,⊙O经过A、B两点,与BC边交于点E,点F为BE下方半圆弧上一点,FE⊥AC,垂足为D,∠BEF=2∠F.
(1)求证:AC为⊙O切线.
(2)若AB=5,DF=4,求⊙O半径长.
26.抛物线y=ax2+bx﹣4交x轴于点A(﹣6,0),B(2,0),交y轴于点C.CD∥AB交抛物线于点D.点E从点C出发,以每秒1个单位长度的速度沿线段CD方向运动.设点E的运动时间为t(0<t<4).过点E作CD的垂线分别交AC,AB于点F,G,以EF为边向左作正方形EFMN.
(1)求抛物线的解析式;
(2)当点M落在抛物线上时,求出t的值;
(3)设正方形EFMN与△ACD重合部分的面积为S.请直接写出S与t的函数关系式与相应的自变量t的取值范围.
参考答案:
1.A
2.D
3.D
4.C
5.D
6.A
7.C
8.D
9.B
10.C
11.(1-a) 2
12.﹣x3y﹣3x2+2xy2﹣1
13.9
14.k<1
15.x≥1
16.42°##42度
17.
18.3
19.8
20.
21.(1);(2),
22.(1)30
(2)200
(3)图形见解析
(4)810
23.(1)① >; ②>;(2)当时,,当时,,当时, ;(3)当时,,当时,,当时,
24.(1)甲种水果的进价是10元/千克,乙种水果的进价为15元/千克
(2)超市购进甲种水果75千克,乙种水果25千克时第二次获得最大利润,最大利润是350元
25.(1)证明见解析
(2)
26.(1)
(2)
(3)S=
2020年贵州省黔东南州中考数学试卷(解析版): 这是一份2020年贵州省黔东南州中考数学试卷(解析版),共22页。试卷主要包含了﹣2020的倒数是,下列运算正确的是,实数2介于,如图,点A是反比例函数y═等内容,欢迎下载使用。
初中数学中考复习 贵州省黔东南州2019年中考数学模拟考试试卷(扫描版,无答案): 这是一份初中数学中考复习 贵州省黔东南州2019年中考数学模拟考试试卷(扫描版,无答案),共3页。
贵州省黔东南州八校联盟2022年中考数学一模试卷(word版含答案): 这是一份贵州省黔东南州八校联盟2022年中考数学一模试卷(word版含答案),共21页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。