2022年北京中考数学一轮复习系列训练——(08)统计(五年中考)
展开
这是一份2022年北京中考数学一轮复习系列训练——(08)统计(五年中考),共23页。试卷主要包含了有甲、乙两组数据,如下表所示等内容,欢迎下载使用。
2022年北京中考数学一轮复习系列训练——(08)统计
五年中考
一.选择题(共4小题)
1.不透明的袋子中有两个小球,上面分别写着数字“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是( )
A. B. C. D.
2.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分
时间t
人数
学生类型
0≤t<10
10≤t<20
20≤t<30
30≤t<40
t≥40
性别
男
7
31
25
30
4
女
8
29
26
32
8
学段
初中
25
36
44
11
高中
下面有四个推断:
①这200名学生参加公益劳动时间的平均数一定在24.5~25.5之间
②这200名学生参加公益劳动时间的中位数在20~30之间
③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间
④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间
所有合理推断的序号是( )
A.①③ B.②④ C.①②③ D.①②③④
3.下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.
2011﹣2016年我国与东南亚地区和东欧地区的贸易额统计图
(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)
根据统计图提供的信息,下列推断不合理的是( )
A.与2015年相比,2016年我国与东欧地区的贸易额有所增长
B.2011﹣2016年,我国与东南亚地区的贸易额逐年增长
C.2011﹣2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元
D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多
4.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.
下面有三个推断:
①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;
②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;
③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.620.
其中合理的是( )
A.① B.② C.①② D.①③
二.填空题(共3小题)
5.有甲、乙两组数据,如下表所示:
甲
11
12
13
14
15
乙
12
12
13
14
14
甲、乙两组数据的方差分别为s甲2,s乙2,则s甲2 s乙2(填“>”,“<”或“=”).
6.小天想要计算一组数据92,90,94,86,99,85的方差S02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为S12,则S12 S02(填“>”,“=”或“<”)
7.从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:
公交车用时
公交车用时的频数
线路
30≤t≤35
35<t≤40
40<t≤45
45<t≤50
合计
A
59
151
166
124
500
B
50
50
122
278
500
C
45
265
167
23
500
早高峰期间,乘坐 (填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.
三.解答题(共5小题)
8.为了解甲、乙两座城市的邮政企业4月份收入的情况,从这两座城市的邮政企业中,各随机抽取了25家邮政企业,获得了它们4月份收入(单位:百万元)的数据,并对数据进行整理、描述和分析.下面给出了部分信息.
a.甲城市邮政企业4月份收入的数据的频数分布直方图如下(数据分成5组:6≤x<8,8≤x<10,10≤x<12,12≤x<14,14≤x≤16):
b.甲城市邮政企业4月份收入的数据在10≤x<12这一组的是:
10.0 10.0 10.1 10.9 11.4 11.5 11.6 11.8
c.甲、乙两座城市邮政企业4月份收入的数据的平均数、中位数如下:
平均数
中位数
甲城市
10.8
m
乙城市
11.0
11.5
根据以上信息,回答下列问题:
(1)写出表中m的值;
(2)在甲城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为p1.在乙城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为p2.比较p1,p2的大小,并说明理由;
(3)若乙城市共有200家邮政企业,估计乙城市的邮政企业4月份的总收入(直接写出结果).
9.小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:
a.小云所住小区5月1日至30日的厨余垃圾分出量统计图:
b.小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:
时段
1日至10日
11日至20日
21日至30日
平均数
100
170
250
(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为 (结果取整数);
(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的 倍(结果保留小数点后一位);
(3)记该小区5月1日至10日的厨余垃圾分出量的方差为s12,5月11日至20日的厨余垃圾分出量的方差为s22,5月21日至30日的厨余垃圾分出量的方差为s32.直接写出s12,s22,s32的大小关系.
10.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:
a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);
b.国家创新指数得分在60≤x<70这一组的是:
61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5
c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:
d.中国的国家创新指数得分为69.5.
(以上数据来源于《国家创新指数报告(2018)》)
根据以上信息,回答下列问题:
(1)中国的国家创新指数得分排名世界第 ;
(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;
(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为 万美元;(结果保留一位小数)
(4)下列推断合理的是 .
①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;
②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.
11.某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.
a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):
b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5
c.A,B两门课程成绩的平均数、中位数、众数如下:
课程
平均数
中位数
众数
A
75.8
m
84.5
B
72.2
70
83
根据以上信息,回答下列问题:
(1)写出表中m的值;
(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是 (填“A”或“B”),理由是 ,
(3)假设该年级学生都参加此次测试,估计A课程成绩超过75.8分的人数.
12.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.
收集数据
从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:
甲 78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77
乙 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40
整理、描述数据
按如下分数段整理、描述这两组样本数据:
成绩x
人数
部门
40≤x≤49
50≤x≤59
60≤x≤69
70≤x≤79
80≤x≤89
90≤x≤100
甲
0
0
1
11
7
1
乙
(说明:成绩80分及以上为生产技能优秀,70﹣﹣79分为生产技能良好,60﹣﹣69分为生产技能合格,60分以下为生产技能不合格)
分析数据
两组样本数据的平均数、中位数、众数如下表所示:
部门
平均数
中位数
众数
甲
78.3
77.5
75
乙
78
80.5
81
得出结论:a.估计乙部门生产技能优秀的员工人数为 ;b.可以推断出 部门员工的生产技能水平较高,理由为 .(至少从两个不同的角度说明推断的合理性)
2022年北京中考数学一轮复习系列训练——(08)统计
参考答案与试题解析
一.选择题(共4小题)
1.不透明的袋子中有两个小球,上面分别写着数字“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是( )
A. B. C. D.
【分析】首先根据题意列出表格,然后由表格求得所有等可能的结果与两次记录的数字之和为3的情况,再利用概率公式即可求得答案.
【解答】解:列表如下:
1
2
1
2
3
2
3
4
由表可知,共有4种等可能结果,其中两次记录的数字之和为3的有2种结果,
所以两次记录的数字之和为3的概率为=,
故选:C.
【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.
2.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分
时间t
人数
学生类型
0≤t<10
10≤t<20
20≤t<30
30≤t<40
t≥40
性别
男
7
31
25
30
4
女
8
29
26
32
8
学段
初中
25
36
44
11
高中
下面有四个推断:
①这200名学生参加公益劳动时间的平均数一定在24.5~25.5之间
②这200名学生参加公益劳动时间的中位数在20~30之间
③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间
④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间
所有合理推断的序号是( )
A.①③ B.②④ C.①②③ D.①②③④
【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
【解答】解:①解这200名学生参加公益劳动时间的平均数:(24.5×97+25.5×103)÷200=25.015,一定在24.5~25.5之间,正确;
②由统计表类别栏计算可得,各时间段人数分别为 15,60,51,62,12,则中位数在20~30 之间,故②正确.
③由统计表计算可得,初中学段栏0≤t<10 的人数在 0~15 之间,当人数为 0 时中位数在 20~30 之间;当人数为 15 时,中位数在 20~30 之间,故③正确.
④由统计表计算可得,高中学段栏各时间段人数分别为 0﹣15,35,15,18,1,当0≤t<10时间段人数为 0 时,中位数在 10~20 之间;当 0≤t<10时间段人数为 15 时,中位数在 10~20 之间,故④错误.
故选:C.
【点评】本题考查了中位数与平均数,正确理解中位数与平均数的意义是解题的关键.
3.下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.
2011﹣2016年我国与东南亚地区和东欧地区的贸易额统计图
(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)
根据统计图提供的信息,下列推断不合理的是( )
A.与2015年相比,2016年我国与东欧地区的贸易额有所增长
B.2011﹣2016年,我国与东南亚地区的贸易额逐年增长
C.2011﹣2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元
D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多
【分析】利用折线统计图结合相应数据,分别分析得出符合题意的答案.
【解答】解:A、由折线统计图可得:
与2015年相比,2016年我国与东欧地区的贸易额有所增长,正确,不合题意;
B、由折线统计图可得:2011﹣2014年,我国与东南亚地区的贸易额2014年后有所下降,故逐年增长错误,故此选项错误,符合题意;
C、2011﹣2016年,我国与东南亚地区的贸易额的平均值为:
(3632.5+4003.0+4436.5+4803.6+4718.7+4554.4)÷6≈4358,
故超过4200亿美元,正确,不合题意,
D、∵4554.4÷1368.2≈3.33,
∴2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多,
故选:B.
【点评】此题主要考查了折线统计图,利用折线统计图获取正确信息是解题关键.
4.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.
下面有三个推断:
①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;
②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;
③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.620.
其中合理的是( )
A.① B.② C.①② D.①③
【分析】根据图形和各个小题的说法可以判断是否正确,从而可以解答本题.
【解答】解:当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以此时“钉尖向上”的频率是:308÷500=0.616,但“钉尖向上”的概率不一定是0.616,故①错误,
随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618.故②正确,
若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的频率可能是0.620,但不一定是0.620,故③错误,
故选:B.
【点评】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答.
二.填空题(共3小题)
5.有甲、乙两组数据,如下表所示:
甲
11
12
13
14
15
乙
12
12
13
14
14
甲、乙两组数据的方差分别为s甲2,s乙2,则s甲2 > s乙2(填“>”,“<”或“=”).
【分析】根据平均数的计算公式求出甲和乙的平均数,再根据方差公式进行计算即可得出答案.
【解答】解:=×(11+12+13+14+15)=13,
s甲2=[(11﹣13)2+(12﹣13)2+(13﹣13)2+(14﹣13)2+(15﹣13)2]=2,
=×(12+12+13+14+14)=13,
s乙2=[(12﹣13)2+(12﹣13)2+(13﹣13)2+(14﹣13)2+(14﹣13)2]=0.8,
∵2>0.8,
∴s甲2>s乙2.
解法二:∵甲、乙5个数据有3个相同,且平均数相等,
甲的极差=15﹣11=4,
乙的极差=14﹣12=2,
∴s甲2>s乙2.
故答案为:>.
【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
6.小天想要计算一组数据92,90,94,86,99,85的方差S02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为S12,则S12 = S02(填“>”,“=”或“<”)
【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.
【解答】解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,两数进行相减,方差不变,
∴S12=S02.
故答案为=.
【点评】本题考查方差的意义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,关键是掌握一组数据都加上同一个非零常数,方差不变.
7.从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:
公交车用时
公交车用时的频数
线路
30≤t≤35
35<t≤40
40<t≤45
45<t≤50
合计
A
59
151
166
124
500
B
50
50
122
278
500
C
45
265
167
23
500
早高峰期间,乘坐 C (填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.
【分析】分别计算出用时不超过45分钟的可能性大小即可得.
【解答】解:∵A线路公交车用时不超过45分钟的可能性为=0.752,
B线路公交车用时不超过45分钟的可能性为=0.444,
C线路公交车用时不超过45分钟的可能性为=0.954,
∴C线路上公交车用时不超过45分钟的可能性最大,
故答案为:C.
【点评】本题主要考查可能性的大小,解题的关键是掌握频数估计概率思想的运用.
三.解答题(共5小题)
8.为了解甲、乙两座城市的邮政企业4月份收入的情况,从这两座城市的邮政企业中,各随机抽取了25家邮政企业,获得了它们4月份收入(单位:百万元)的数据,并对数据进行整理、描述和分析.下面给出了部分信息.
a.甲城市邮政企业4月份收入的数据的频数分布直方图如下(数据分成5组:6≤x<8,8≤x<10,10≤x<12,12≤x<14,14≤x≤16):
b.甲城市邮政企业4月份收入的数据在10≤x<12这一组的是:
10.0 10.0 10.1 10.9 11.4 11.5 11.6 11.8
c.甲、乙两座城市邮政企业4月份收入的数据的平均数、中位数如下:
平均数
中位数
甲城市
10.8
m
乙城市
11.0
11.5
根据以上信息,回答下列问题:
(1)写出表中m的值;
(2)在甲城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为p1.在乙城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为p2.比较p1,p2的大小,并说明理由;
(3)若乙城市共有200家邮政企业,估计乙城市的邮政企业4月份的总收入(直接写出结果).
【分析】(1)根据中位数的意义,求出甲城市抽样25家邮政企业4月份的营业额从小到大排列,得出处在第13位的数据即可;
(2)根据p1,p2所表示的意义,结合两个城市抽取的邮政企业4月份的营业额的具体数据,得出答案;
(3)根据乙城市邮政企业4月份营业额的平均数以及企业的数量进行计算即可.
【解答】解:(1)将甲城市抽取的25家邮政企业4月份的营业额从小到大排列,处在中间位置的一个数是10.1,
因此中位数是10.1,即m=10.1;
(2)由题意得p1=5+3+4=12(家),
由于乙城市抽取的25家邮政企业4月份的营业额的平均数是11.0,中位数是11.5,
因此所抽取的25家邮政企业4月份营业额在11.5及以上的占一半,
也就是p2的值至少为13,
∴p1<p2;
(3)11.0×200=2200(百万元),
答:乙城市200家邮政企业4月份的总收入约为2200百万元.
【点评】本题考查频数分布直方图、平均数、中位数,掌握平均数、中位数的意义是正确解答的前提.
9.小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:
a.小云所住小区5月1日至30日的厨余垃圾分出量统计图:
b.小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:
时段
1日至10日
11日至20日
21日至30日
平均数
100
170
250
(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为 173 (结果取整数);
(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的 2.9 倍(结果保留小数点后一位);
(3)记该小区5月1日至10日的厨余垃圾分出量的方差为s12,5月11日至20日的厨余垃圾分出量的方差为s22,5月21日至30日的厨余垃圾分出量的方差为s32.直接写出s12,s22,s32的大小关系.
【分析】(1)结合表格,利用加权平均数的定义列式计算可得;
(2)结合以上所求结果计算即可得出答案;
(3)由图a知第1个10天的分出量最分散、第3个10天分出量最为集中,根据方差的意义可得答案.
【解答】解:(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为≈173(千克),
故答案为:173;
(2)该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的≈2.9(倍),
故答案为:2.9;
(3)由小云所住小区5月1日至30日的厨余垃圾分出量统计图知,第1个10天的分出量最分散、第3个10天分出量最为集中,
∴s12>s22>s32.
【点评】本题主要考查方差和加权平均数,解题的关键是掌握方差的意义和加权平均数的定义.
10.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:
a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);
b.国家创新指数得分在60≤x<70这一组的是:
61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5
c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:
d.中国的国家创新指数得分为69.5.
(以上数据来源于《国家创新指数报告(2018)》)
根据以上信息,回答下列问题:
(1)中国的国家创新指数得分排名世界第 17 ;
(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;
(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为 2.8 万美元;(结果保留一位小数)
(4)下列推断合理的是 ①② .
①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;
②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.
【分析】(1)由国家创新指数得分为69.5以上(含69.5)的国家有17个,即可得出结果;
(2)根据中国在虚线l1的上方,中国的创新指数得分为69.5,找出该点即可;
(3)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可得出结果;
(4)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可判断①②的合理性.
【解答】解:(1)∵国家创新指数得分为69.5以上(含69.5)的国家有17个,
∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,
故答案为:17;
(2)如图所示:
(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.8万美元;
故答案为:2.8;
(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,
①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;
②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值;合理;
故答案为:①②.
【点评】本题考查了频数分布直方图、统计图、样本估计总体、近似数和有效数字等知识;读懂频数分布直方图和统计图是解题的关键.
11.某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.
a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):
b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5
c.A,B两门课程成绩的平均数、中位数、众数如下:
课程
平均数
中位数
众数
A
75.8
m
84.5
B
72.2
70
83
根据以上信息,回答下列问题:
(1)写出表中m的值;
(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是 B (填“A”或“B”),理由是 该学生的成绩小于A课程的中位数,而大于B课程的中位数 ,
(3)假设该年级学生都参加此次测试,估计A课程成绩超过75.8分的人数.
【分析】(1)先确定A课程的中位数落在第4小组,再由此分组具体数据得出第30、31个数据的平均数即可;
(2)根据两个课程的中位数定义解答可得;
(3)用总人数乘以样本中超过75.8分的人数所占比例可得.
【解答】解:(1)∵A课程总人数为2+6+12+14+18+8=60,
∴中位数为第30、31个数据的平均数,而第30、31个数据均在70≤x<80这一组,
∴中位数在70≤x<80这一组,
∵70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5,
∴A课程的中位数为=78.75,即m=78.75;
(2)∵该学生的成绩小于A课程的中位数,而大于B课程的中位数,
∴这名学生成绩排名更靠前的课程是B,
故答案为:B、该学生的成绩小于A课程的中位数,而大于B课程的中位数.
(3)估计A课程成绩超过75.8分的人数为300×=180人.
【点评】本题主要考查频数分布直方图、中位数及样本估计总体,解题的关键是根据直方图得出解题所需数据及中位数的定义和意义、样本估计总体思想的运用.
12.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.
收集数据
从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:
甲 78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77
乙 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40
整理、描述数据
按如下分数段整理、描述这两组样本数据:
成绩x
人数
部门
40≤x≤49
50≤x≤59
60≤x≤69
70≤x≤79
80≤x≤89
90≤x≤100
甲
0
0
1
11
7
1
乙
1
0
0
7
10
2
(说明:成绩80分及以上为生产技能优秀,70﹣﹣79分为生产技能良好,60﹣﹣69分为生产技能合格,60分以下为生产技能不合格)
分析数据
两组样本数据的平均数、中位数、众数如下表所示:
部门
平均数
中位数
众数
甲
78.3
77.5
75
乙
78
80.5
81
得出结论:a.估计乙部门生产技能优秀的员工人数为 240 ;b.可以推断出 甲或乙 部门员工的生产技能水平较高,理由为 ①甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;
②甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高.
或①乙部门生产技能测试中,中位数较高,表示乙部门员工的生产技能水平较高;
②乙部门生产技能测试中,众数较高,表示乙部门员工的生产技能水平较高. .(至少从两个不同的角度说明推断的合理性)
【分析】根据收集数据填写表格即可求解;
用乙部门优秀员工人数除以20乘以400即可得出答案,根据情况进行讨论分析,理由合理即可.
【解答】解:填表如下:
成绩x
人数
部门
40≤x≤49
50≤x≤59
60≤x≤69
70≤x≤79
80≤x≤89
90≤x≤100
甲
0
0
1
11
7
1
乙
1
0
0
7
10
2
a.×400=240(人).
故估计乙部门生产技能优秀的员工人数为240;
b.答案不唯一,理由合理即可.
可以推断出甲部门员工的生产技能水平较高,理由为:
①甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;
②甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高.
或可以推断出乙部门员工的生产技能水平较高,理由为:
①乙部门生产技能测试中,中位数较高,表示乙部门员工的生产技能水平较高;
②乙部门生产技能测试中,众数较高,表示乙部门员工的生产技能水平较高.
故答案为:1,0,0,7,10,2;
240;甲或乙,①甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;
②甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高;
或①乙部门生产技能测试中,中位数较高,表示乙部门员工的生产技能水平较高;
②乙部门生产技能测试中,众数较高,表示乙部门员工的生产技能水平较高.
【点评】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义以及用样本估计总体是解题的关键.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2022/1/9 14:49:23;用户:笑涵数学;邮箱:15699920825;学号:36906111
相关试卷
这是一份专题25 统计与概率 中考数学一轮复习专题训练(北京专用),共34页。试卷主要包含了单选题,填空题,综合题等内容,欢迎下载使用。
这是一份2022北京中考数学一轮复习系列训练----统计(教师版),共81页。试卷主要包含了故②正确,,有甲、乙两组数据,如下表所示等内容,欢迎下载使用。
这是一份2022北京中考数学一轮复习系列系列——统计(学生版),共47页。试卷主要包含了有甲、乙两组数据,如下表所示等内容,欢迎下载使用。