所属成套资源:北师大版数学七年级上学期学案(基础+提高)全套
初中数学北师大版七年级上册5.4 应用一元一次方程——打折销售习题
展开
这是一份初中数学北师大版七年级上册5.4 应用一元一次方程——打折销售习题,文件包含一元一次方程应用一水箱变高了与打折销售提高巩固练习doc、一元一次方程应用一水箱变高了与打折销售提高知识讲解doc等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。
【学习目标】
1.能分析简单问题中的数量关系,并建立方程解决问题;体会利用方程解决问题的关键是寻找等量关系.
2.进一步经历运用方程解决实际问题的过程,体会数学的应用价值.
【要点梳理】
要点一、用一元一次方程解决实际问题的一般步骤
列方程解应用题的基本思路为:问题方程解答.由此可得解决此类
题的一般步骤为:审、设、列、解、检验、答.
要点诠释:
(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系;
(2)“设”就是设未知数,一般求什么就设什么为x,但有时也可以间接设未知数;
(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;
(4)“解”就是解方程,求出未知数的值.
(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;
(6)“答”就是写出答案,注意单位要写清楚.
要点二、水箱变高了(等积变形问题)
“等积变形”是以形状改变而体积不变为前提.常见类型:①形状面积变了,周长没变;②原体积=变化后体积.
常用的面积、体积公式:
长方形的周长公式:(长+宽)×2;面积公式:长×宽
长方体的体积公式:长×宽×高
正方形的周长公式:边长×4; 面积公式:边长×边长
正方体体积公式:边长×边长×边长
圆的周长公式:C=;面积公式:;
圆柱的体积公式:V柱=底面积×高;圆锥的体积公式:V锥=×底面积×高
要点诠释:寻找等量关系的方法,抓住两个等量关系:第一,形变体积不变;第二,形变体积也变,但重量不变.
要点三、打折销售(利润问题)
(1)
(2) 标价=成本(或进价)×(1+利润率)
(3) 实际售价=标价×打折率
(4) 利润=售价-成本(或进价)=成本×利润率
注意:“商品利润=售价-成本”中的右边为正时,是盈利;当右边为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售.
要点诠释:寻找等量关系的方法,抓住价格升降对利润的影响来考虑.
要点四、方案问题
选择设计方案的一般步骤:
(1)运用一元一次方程解应用题的方法求解两种方案值相等的情况.
(2)用特殊值试探法选择方案,取小于(或大于)一元一次方程解的值,比较两种方案的优劣性后下结论.
【典型例题】
类型一、水箱变高了(等积变形问题)
1.(2020•厦门校级一模)据统计资料,甲、乙两种作物的单位面积产量的比是1:2,现要把一块长100米,宽50米的长方形土地,分为两块小长方形土地,分别种植这两种作物,是否存在一种划分这块土地的方法,使甲乙两种作物的总产量的比是3:4?请说明理由.
【思路点拨】可设种植作物甲的面积是x平方米,则种植农作物乙的面积是(100×50﹣x)平方米,根据甲、乙两种作物的总产量的比为3:4,列出方程求解即可.
【答案与解析】
解:设种植作物甲的面积是x平方米,则种植农作物乙的面积是(100×50﹣x)平方米,依题意有
x:[2(100×50﹣x)]=3:4,
解得x=3000,
100×50﹣x
=5000﹣3000
=2000.
故种植作物甲的面积是3000平方米,种植作物乙的面积是2000平方米,使甲、乙两种作物的总产量的比为3:4.
【总结升华】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,得出两部分面积之比.
类型二、打折销售(利润问题)
2.(2020春•盐城校级月考)某商店在一笔交易中卖了两个进价不同的随身听,售价都为132元,按成本计算,其中一个盈利20%,另一个盈利10%,则该商店在这笔交易中共赚了 元.
【思路点拨】根据题意分别求出两个随身听的进价,进而求出答案.
【答案】34.
【解析】解:设一个的进价为x元,根据题意可得:
x(1+20%)=132,
解得:x=110,
设另一个的进价为y元,根据题意可得:
y(1+10%)=132,
解得:x=120,
故该商店在这笔交易中共赚了:132+132﹣120﹣110=34(元).
故答案为:34.
【总结升华】此题主要考查了一元一次方程的应用,正确理清进价与利润之间的关系是解题关键.
举一反三:
【变式】某种商品的标价为900元,为了适应市场竞争,店主打出广告:该商品九折出售,并返100元现金.这样他仍可获得10%的利润率(相对于进货价),问此商品的进货价是多少?(用四舍五入法精确到个位)
【答案】
解:设此商品的进货价为x元,依题意,得:
(900×0.9-100)-x=10%x,
得:x= ∴ x≈645.
答:此商品的进价约为645元.
3.商场出售的A型冰箱每台售价2190元,每日耗电量为1度,而B型节能冰箱每台售价比A型冰箱高出10%,但每日耗电量却为0.55度.现将A型冰箱打折出售(打一折后的售价为原价的),问商场将A型冰箱打几折,消费者买A型冰箱10年的总费用与B型冰箱10年的总费用相当(每年365天,每度电按0.40元计算).
【思路点拨】本题主要是根据两种电冰箱使用10年所耗电量的费用相同来列方程.
【答案与解析】
解:设商场A型冰箱打x折,依题意,买A型冰箱需2190×元,10年的电费是365×10×1×0.4元;买B型冰箱需2190×(1+10%)元,10年的电费是365×10×0.55×0.4元,依题意,得:
2190×+365×10×1×0.4=2190×(1+10%)+365×10×0.55×0.4
x=8
答:商场将A型冰箱打8折出售,消费者买A型冰箱10年的总费用与B型冰箱10年的总费用相当.
【总结升华】本题考查一元一次方程的应用,将现实生活中的事件与数学思想联系起来,读懂题意,根据耗电量、售价、打折情况列出方程求解.
类型三、方案设计问题
4.某牛奶加工厂有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取利润500元,制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获利润2000元,该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片每天可加工1吨,受人员限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.为此,该厂某领导提出了两种可行方案:
方案1:尽可能多的制成奶片,其余直接销售鲜牛奶;
方案2:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.
你认为选择哪种方案获利最多,为什么?
【答案与解析】
解:(1)若选择方案1,依题意,
总利润=2000元×4+500元×(9-4)=10500(元).
(2)若选择方案2.
方法一:
解:设将x吨鲜奶制成奶片,则用(9-x)吨鲜奶制成酸奶销售.
依题意得,,
解得.
当时,.
总利润=2000×1.5+1200×7.5=12000(元).
∵ 12000>10500,
∴ 选择方案2较好.
方法二:
解:设x天生产奶片,则(4-x)天生产酸奶.
x+3(4-x)=9
x=1.5
4-x=2.5
1.5×1×2000+2.5×3×1200=12000(元)
∵ 12000>10500,
∴ 选择方案2较好.
答:选择方案2获利最多,只要在四天内用7.5吨鲜奶加工成酸奶,用1.5吨的鲜奶加工成奶片.
【总结升华】如果题目中的数量关系较复杂,常借助列表,画线段图,示意图等手段帮助我们理顺题目中的数量关系,列出方程.例如本题方案2中的方法一,设将x吨鲜奶制成奶片,则列表如下:
通过列表可以使条件之间的关系一目了然,从而得到等量关系,当然此题也可以设天数来计算,同学们可根据理解自己选择.
举一反三:
【变式】(2015春•绿园区期末)某移动公司开设了两种通讯业务:“全球通”使用者缴费50元月租费,然后每通话1min再付话费0.4元;“快捷通”不缴月租费,每通话1min付话费0.6元(本题的通话均指市内通话).若一个月通话xmin,两种方式的费用分别为y1元和y2元.
(1)用含x的式子分别表示y1和y2,则y1= ,y2= ;
(2)某人估计一个月通话300min,选择哪种业务合算?
(3)每个月通话多少分钟时,两种方式所付的费用一样多?
【答案】
解:(1)y1=50+0.4x;y2=0.6x;
故答案为:50+0.4x,0.6x;
(2)令x=300
则y1=50+0.4×300=170;y2=0.6×300=180
所以选择全球通合算.
(3)令y1=y2,则50+0.4x=0.6x,
解之,得x=250
所以通话250分钟两种费用相同.每吨利润
吨数
工效
天数
酸奶
1200
3
奶片
2000
1
合计
9
4
相关试卷
这是一份数学北师大版第六章 平行四边形4 多边形的内角与外角和精练,文件包含多边形提高知识讲解doc、多边形提高巩固练习doc等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。
这是一份数学八年级下册2 分式的乘除法课堂检测,文件包含分式的乘除提高巩固练习doc、分式的乘除提高知识讲解doc等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。
这是一份北师大版八年级下册3 公式法课后测评,文件包含完全平方公式提高知识讲解doc、完全平方公式提高巩固练习doc等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。