广东省深圳市北师大附中中考数学二模试卷
展开
这是一份广东省深圳市北师大附中中考数学二模试卷,共21页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
广东省深圳市北师大附中中考数学二模试卷
一、选择题(每小题3分,共36分)
1.(3分)﹣2的相反数是( )
A. B.﹣ C.2 D.﹣2
2.(3分)太阳的半径约为696000km,把696000这个数用科学记数法表示为( )
A.6.96×103 B.69.6×105 C.6.96×105 D.6.96×106
3.(3分)不等式组的解集是( )
A.﹣2≤x≤1 B.﹣2<x<1 C.x≤﹣1 D.x≥2
4.(3分)下列计算正确的是( )
A.a3÷a2=a3•a﹣2 B. C.2a2+a2=3a4 D.(a﹣b)2=a2﹣b2
5.(3分)如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是( )
A. B. C. D.
6.(3分)一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是( )
A.165° B.120° C.150° D.135°
7.(3分)在△ABC中,∠C=90°,BC=4cm,AC=3cm,把△ABC绕点A顺时针旋转90°后,得到△A1B1C1(如图所示),则线段AB所扫过的面积为( )
A.5 B.πcm2 C.πcm2 D.5πcm2
8.(3分)已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为( )
A.﹣10 B.4 C.﹣4 D.10
9.(3分)2010年3月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是( )
A.32,31 B.31,32 C.31,31 D.32,35
10.(3分)在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为,把△EFO缩小,则点E的对应点E′的坐标是( )
A.(﹣2,1) B.(﹣8,4) C.(﹣8,4)或(8,﹣4) D.(﹣2,1)或(2,﹣1)
11.(3分)如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将△ABE以BE为折痕向右折叠,AE与CD交于点F,则的值是( )
A.1 B. C. D.
12.(3分)小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:
①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.
你认为其中正确信息的个数有( )
A.2个 B.3个 C.4个 D.5个
二、填空题(每小题3分,共12分)
13.(3分)分解因式:ax2+2ax﹣3a= .
14.(3分)用半径为10cm,圆心角为216°的扇形做成一个圆锥的侧面,则这个圆锥的高为 cm.
15.(3分)如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为 m(结果不作近似计算).
16.(3分)如图,已知四边形ABCD是平行四边形,BC=3AB,A,B两点的坐标分别是(﹣1,0),(0,2),C,D两点在反比例函数y=(x<0)的图象上,则k的值等于 .
三、计算题(17题5分,18题6分,共11分)
17.(5分)计算:|﹣2|+20100﹣(﹣)﹣1+3tan30°.
18.(6分)先化简,后求值:,其中a=3.
四、解答题(19题7分,20题7分,21题9分,22题9分,23题9分,共41分)
19.(7分)某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:
(1)九(1)班的学生人数为 ,并把条形统计图补充完整;
(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是 度;
(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.
20.(7分)如图,四边形ABCD是边长为a的正方形,点G、E分别是边AB、BC的中点,∠AEF=90°,且EF交正方形外角的平方线CF于点F.
(1)证明:△AGE≌△ECF;
(2)求△AEF的面积.
21.(9分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.
(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:
销售单价(元)
x
销售量y(件)
销售玩具获得利润w(元)
(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.
(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
22.(9分)如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.
(1)判断直线CE与⊙O的位置关系,并证明你的结论;
(2)若tan∠ACB=,BC=2,求⊙O的半径.
23.(9分)如图,已知抛物线经过原点o和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F.
(1)求m的值及该抛物线对应的解析式;
(2)P(x,y)是抛物线上的一点,若S△ADP=S△ADC,求出所有符合条件的点P的坐标;
(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形.若能,请直接写出点M的运动时间t的值;若不能,请说明理由.
深圳市北师大附中中考数学二模试卷
参考答案与试题解析
一、选择题(每小题3分,共36分)
1.(3分)﹣2的相反数是( )
A. B.﹣ C.2 D.﹣2
【解答】解:﹣2的相反数是2,
故选:C.
2.(3分)太阳的半径约为696000km,把696000这个数用科学记数法表示为( )
A.6.96×103 B.69.6×105 C.6.96×105 D.6.96×106
【解答】解:将696000用科学记数法表示为6.96×105.
故选C.
3.(3分)不等式组的解集是( )
A.﹣2≤x≤1 B.﹣2<x<1 C.x≤﹣1 D.x≥2
【解答】解:,
由①得,x≥﹣2;
由②得,x≤1;
故不等式组的解集为﹣2≤x≤1.
故选A.
4.(3分)下列计算正确的是( )
A.a3÷a2=a3•a﹣2 B. C.2a2+a2=3a4 D.(a﹣b)2=a2﹣b2
【解答】解:A、a3÷a2=a3•a﹣2,计算正确,故本选项正确;
B、=|a|,计算错误,故本选项错误;
C、2a2+a2=3a2,计算错误,故本选项错误;
D、(a﹣b)2=a2﹣2ab+b2,计算错误,故本选项错误;
故选A.
5.(3分)如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是( )
A. B. C. D.
【解答】解:从几何体上面看,是左边2个,右边1个正方形.
故选:D.
6.(3分)一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是( )
A.165° B.120° C.150° D.135°
【解答】解:给图中标上∠1、∠2,如图所示.
∵∠1+45°+90°=180°,
∴∠1=45°,
∵∠1=∠2+30°,
∴∠2=15°.
又∵∠2+∠α=180°,
∴∠α=165°.
故选A.
7.(3分)在△ABC中,∠C=90°,BC=4cm,AC=3cm,把△ABC绕点A顺时针旋转90°后,得到△A1B1C1(如图所示),则线段AB所扫过的面积为( )
A.5 B.πcm2 C.πcm2 D.5πcm2
【解答】解:∵在△ABC中,∠C=90°,BC=4cm,AC=3cm,
∴AB===5cm,
∴线段AB所扫过的面积是以点A为圆心,AB为半径,圆心角是90°扇形的面积==cm2.
故选B.
8.(3分)已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为( )
A.﹣10 B.4 C.﹣4 D.10
【解答】解:根据题意得:m+n=3,mn=a,
∵(m﹣1)(n﹣1)=mn﹣(m+n)+1=﹣6,
∴a﹣3+1=﹣6,
解得:a=﹣4.
故选C
9.(3分)2010年3月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是( )
A.32,31 B.31,32 C.31,31 D.32,35
【解答】解:∵数据31出现了3次,最多,
∴众数为31,
∵排序后位于中间位置的数是31,
∴中位数是31,
故选C.
10.(3分)在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为,把△EFO缩小,则点E的对应点E′的坐标是( )
A.(﹣2,1) B.(﹣8,4) C.(﹣8,4)或(8,﹣4) D.(﹣2,1)或(2,﹣1)
【解答】解:∵点E(﹣4,2),以O为位似中心,相似比为,
∴点E的对应点E′的坐标为:(﹣4×,2×)或(﹣4×(﹣),2×(﹣)),
即(﹣2,1)或(2,﹣1),
故选:D.
11.(3分)如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将△ABE以BE为折痕向右折叠,AE与CD交于点F,则的值是( )
A.1 B. C. D.
【解答】解:由题意知:AB=BE=6,BD=AD﹣AB=2,AD=AB﹣BD=4;
∵CE∥AB,
∴△ECF∽△ADF,
得=,
即DF=2CF,所以CF:CD=1:3;
故选C.
12.(3分)小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:
①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.
你认为其中正确信息的个数有( )
A.2个 B.3个 C.4个 D.5个
【解答】解:①如图,∵抛物线开口方向向下,∴a<0.
∵对称轴x=﹣=﹣,∴b=a<0,
∴ab>0.故①正确;
②如图,当x=1时,y<0,即a+b+c<0.
故②正确;
③如图,当x=﹣1时,y=a﹣b+c>0,
∴2a﹣2b+2c>0,即3b﹣2b+2c>0,
∴b+2c>0.
故③正确;
④如图,当x=﹣时,y>0,即a﹣b+c>0.
∴a﹣2b+4c>0,
故④正确;
⑤如图,对称轴x=﹣=﹣,则.故⑤正确.
综上所述,正确的结论是①②③④⑤,共5个.
故选D.
二、填空题(每小题3分,共12分)
13.(3分)分解因式:ax2+2ax﹣3a= a(x+3)(x﹣1) .
【解答】解:ax2+2ax﹣3a=a(x2+2x﹣3)=a(x+3)(x﹣1).
故答案为:a(x+3)(x﹣1)
14.(3分)用半径为10cm,圆心角为216°的扇形做成一个圆锥的侧面,则这个圆锥的高为 8 cm.
【解答】解:如图:圆的周长即为扇形的弧长,
列出关系式解答:=2πx,
又∵n=216,r=10,
∴(216×π×10)÷180=2πx,
解得x=6,
h==8.
故答案为:8cm.
15.(3分)如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为 12 m(结果不作近似计算).
【解答】解:过点D作DE⊥AB于点E,
则四边形BCDE是矩形,
根据题意得:∠ACB=β=60°,∠ADE=α=30°,BC=18m,
∴DE=BC=18m,CD=BE,
在Rt△ABC中,AB=BC•tan∠ACB=18×tan60°=18(m),
在Rt△ADE中,AE=DE•tan∠ADE=18×tan30°=6(m),
∴DC=BE=AB﹣AE=18﹣6=12(m).
故答案为:12.
16.(3分)如图,已知四边形ABCD是平行四边形,BC=3AB,A,B两点的坐标分别是(﹣1,0),(0,2),C,D两点在反比例函数y=(x<0)的图象上,则k的值等于 ﹣24 .
【解答】解:设点C坐标为(a,),(a<0),点D的坐标为(x,y).
∵四边形ABCD是平行四边形,
∴AC与BD的中点坐标相同,
∴(a﹣1,+0)=(x+0,y+2),
则x=a﹣1,y=,
代入y=,可得:k=2a﹣2a2 ①;
在Rt△AOB中,AB==,
∴BC=3AB=3,
故BC2=(0﹣a)2+(﹣2)2=(3)2,
整理得:a4+k2﹣4ka=41a2,
将①k=2a﹣2a2,代入后化简可得:a2=9,
∵a<0,
∴a=﹣3,
∴k=﹣6﹣18=﹣24.
故答案为:﹣24.
方法二:
因为ABCD是平行四边形,所以点C、D是点A、B分别向左平移a,向上平移b得到的.
故设点C坐标是(﹣a,2+b),点D坐标是(﹣1﹣a,b),(a>0,b>0)
根据K的几何意义,|﹣a|×|2+b|=|﹣1﹣a|×|b|,
整理得2a+ab=b+ab,
解得b=2a.
过点D作x轴垂线,交x轴于H点,在直角三角形ADH中,
由已知易得AD=3,AH=a,DH=b=2a.
AD2=AH2+DH2,即45=a2+4a2,
得a=3.
所以D坐标是(﹣4,6)
所以|k|=24,由函数图象在第二象限,
所以k=﹣24.
三、计算题(17题5分,18题6分,共11分)
17.(5分)计算:|﹣2|+20100﹣(﹣)﹣1+3tan30°.
【解答】解:原式=2﹣+1+3+3×
=6.
18.(6分)先化简,后求值:,其中a=3.
【解答】解:÷
=÷
=
=
=
=
=a.
∴当a=3时,原式=3.
四、解答题(19题7分,20题7分,21题9分,22题9分,23题9分,共41分)
19.(7分)某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:
(1)九(1)班的学生人数为 40 ,并把条形统计图补充完整;
(2)扇形统计图中m= 10 ,n= 20 ,表示“足球”的扇形的圆心角是 72 度;
(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.
【解答】解:(1)九(1)班的学生人数为:12÷30%=40(人),
喜欢足球的人数为:40﹣4﹣12﹣16=40﹣32=8(人),
补全统计图如图所示;
(2)∵×100%=10%,
×100%=20%,
∴m=10,n=20,
表示“足球”的扇形的圆心角是20%×360°=72°;
故答案为:(1)40;(2)10;20;72;
(3)根据题意画出树状图如下:
一共有12种情况,恰好是1男1女的情况有6种,
∴P(恰好是1男1女)==.
20.(7分)如图,四边形ABCD是边长为a的正方形,点G、E分别是边AB、BC的中点,∠AEF=90°,且EF交正方形外角的平方线CF于点F.
(1)证明:△AGE≌△ECF;
(2)求△AEF的面积.
【解答】(1)证明:∵G,E分别是正方形ABCD的边AB,BC的中点,
∴AG=GB=BE=EC,且∠AGE=180°﹣45°=135°;
又∵CF是∠DCH的平分线,
∴∠DCF=∠FCH=45°,
∠ECF=90°+45°=135°;
在△AGE和△ECF中,
;
∴△AGE≌△ECF;
(2)解:由△AGE≌△ECF,得AE=EF;
又∵∠AEF=90°,
∴△AEF是等腰直角三角形;
∵AB=a,E为BC中点,
∴BE=BC=AB=a,
根据勾股定理得:AE==a,
∴S△AEF=a2.
21.(9分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.
(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:
销售单价(元)
x
销售量y(件)
1000﹣10x
销售玩具获得利润w(元)
﹣10x2+1300x﹣30000
(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.
(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
【解答】解:(1)
销售单价(元)
x
销售量y(件)
1000﹣10x
销售玩具获得利润w(元)
﹣10x2+1300x﹣30000
(2)﹣10x2+1300x﹣30000=10000
解之得:x1=50,x2=80
答:玩具销售单价为50元或80元时,可获得10000元销售利润,
(3)根据题意得
解之得:44≤x≤46,
w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250,
∵a=﹣10<0,对称轴是直线x=65,
∴当44≤x≤46时,w随x增大而增大.
∴当x=46时,W最大值=8640(元).
答:商场销售该品牌玩具获得的最大利润为8640元.
22.(9分)如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.
(1)判断直线CE与⊙O的位置关系,并证明你的结论;
(2)若tan∠ACB=,BC=2,求⊙O的半径.
【解答】解:(1)直线CE与⊙O相切.…(1分)
理由如下:
∵四边形ABCD是矩形,
∴BC∥AD,∠ACB=∠DAC;
又∵∠ACB=∠DCE,
∴∠DAC=∠DCE;
连接OE,则∠DAC=∠AEO=∠DCE;
∵∠DCE+∠DEC=90°
∴∠AE0+∠DEC=90°
∴∠OEC=90°,即OE⊥CE.
又OE是⊙O的半径,
∴直线CE与⊙O相切.…(5分)
(2)∵tan∠ACB==,BC=2,
∴AB=BC•tan∠ACB=,
∴AC=;
又∵∠ACB=∠DCE,
∴tan∠DCE=tan∠ACB=,
∴DE=DC•tan∠DCE=1;
方法一:在Rt△CDE中,CE==,
连接OE,设⊙O的半径为r,则在Rt△COE中,CO2=OE2+CE2,即=r2+3
解得:r=
方法二:AE=AD﹣DE=1,过点O作OM⊥AE于点M,则AM=AE=
在Rt△AMO中,OA==÷=…(9分)
23.(9分)如图,已知抛物线经过原点o和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F.
(1)求m的值及该抛物线对应的解析式;
(2)P(x,y)是抛物线上的一点,若S△ADP=S△ADC,求出所有符合条件的点P的坐标;
(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形.若能,请直接写出点M的运动时间t的值;若不能,请说明理由.
【解答】解:(1)∵点B(﹣2,m)在直线y=﹣2x﹣1上
∴m=﹣2×(﹣2)﹣1=4﹣1=3,
所以,点B(﹣2,3),
又∵抛物线经过原点O,
∴设抛物线的解析式为y=ax2+bx,
∵点B(﹣2,3),A(4,0)在抛物线上,
∴,
解得:.
∴抛物线的解析式为y=x2﹣x.
(2)∵P(x,y)是抛物线上的一点,
∴P(x,x2﹣x),
若S△ADP=S△ADC,
∵S△ADC=AD•OC,S△ADP=AD•|y|
又∵点C是直线y=﹣2x﹣1与y轴交点,
∴C(0,﹣1),
∴OC=1,
∴|x2﹣x|=,即x2﹣x=1或x2﹣x=﹣1,
解得:x1=2+2,x2=2﹣2,x3=x4=2,
∴点P的坐标为 P1(2+2,1),P2(2﹣2,1),P3(2,﹣1)
(3)结论:存在.如图2
∵抛物线的解析式为y=x2﹣x,
∴顶点E(2,﹣1),对称轴为x=2;
点F是直线y=﹣2x﹣1与对称轴x=2的交点,∴F(2,﹣5),DF=5.
又∵A(4,0),
∴AE=.
如右图所示,在点M的运动过程中,依次出现四个菱形:
①菱形AEM1Q1.
∵此时EM1=AE=,
∴M1F=DF﹣DE﹣DM1=4﹣,
∴t1=4﹣;
②菱形AEOM2.
∵此时DM2=DE=1,
∴M2F=DF+DM2=6,
∴t2=6;
③菱形AEM3Q3.
∵此时EM3=AE=,
∴DM3=EM3﹣DE=﹣1,
∴M3F=DM3+DF=(﹣1)+5=4+,
∴t3=4+;
④菱形AM4EQ4.
此时AE为菱形的对角线,设对角线AE与M4Q4交于点H,则AE⊥M4Q4,
∵易知△AED∽△M4EH,
∴=,
即=,得M4E=2.5,
∴DM4=M4E﹣DE=2.5﹣1=1.5,
∴M4F=DM4+DF=1.5+5=6.5,
∴t4=6.5.
综上所述,存在点M、点Q,使得以Q、A、E、M四点为顶点的四边形是菱形;时间t的值为:t1=4﹣,t2=6,t3=4+,t4=6.5.
相关试卷
这是一份2022年广东省深圳市中考数学二模试卷,共31页。试卷主要包含了下面几何体的左视图为,下列运算正确的是,不等式的解集是,下列命题中,是真命题的是,,那么旗杆的高度是等内容,欢迎下载使用。
这是一份2022年广东省深圳市光明区中考数学二模试卷,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广东省深圳市龙岗区中考数学二模试卷,共22页。