广东省深圳市南山区中考数学二模试卷
展开深圳市南山区中考数学二模试卷
一、选择题:本题有12小题,每题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.
1.(3分)﹣5的倒数是( )
A. B. C.﹣5 D.5
2.(3分)人工智能AlphaGo因在人机大战中大胜韩国围棋手李世石九段而声名显赫.它具有自我对弈学习能力,决战前已做了两千万局的训练(等同于一个人近千年的训练量).此处“两千万”用科学记数法表示为( )
A.0.2×107 B.2×107 C.0.2×108 D.2×108
3.(3分)方程x2﹣4x+4=0的根的情况是( )
A.有两个相等的实数根 B.只有一个实数根
C.没有实数根 D.有两个不相等的实数根
4.(3分)如图是由七个相同的小正方体堆砌而成的几何体,则这个几何体的俯视图是( )
A. B. C. D.
5.(3分)下列等式成立的是( )
A.(a+4)(a﹣4)=a2﹣4 B.2a2﹣3a=﹣a C.a6÷a3=a2 D.(a2)3=a6
6.(3分)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是( )
A. B. C. D.
7.(3分)如图,l1∥l2,l3⊥l4,∠1=42°,那么∠2的度数为( )
A.48° B.42° C.38° D.21°
8.(3分)关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是( )
A.m≥2 B.m≤2 C.m>2 D.m<2
9.(3分)如图,已知二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A(3,2),与x轴交于点B(2,0),若y1<y2,则x的取值范围是( )
A.0<x<2 B.0<x<3 C.2<x<3 D.x<0或x>3
10.(3分)如图,一根电线杆的接线柱部分AB在阳光下的投影CD的长为1米,太阳光线与地面的夹角∠ACD=60°,则AB的长为( )
A.米 B.米 C.米 D.米
11.(3分)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,此时点C恰好在线段DE上,若∠B=40°,∠CAE=60°,则∠DAC的度数为( )
A.15° B.20° C.25° D.30°
12.(3分)如图,Rt△ABC中,∠C=90°,AC=6,BC=8,AD平分∠BAC,则点B到AD的距离是( )
A.3 B.4 C.2 D.
二、填空题:本题共4小题,每小题分,共12分,把答案填在答题卡上
13.(3分)某校在进行“阳光体育活动”中,统计了7位原来偏胖的学生的情况,他们的体重分别降低了5,9,3,10,6,8,5(单位:kg),则这组数据的中位数是 .
14.(3分)分解因式:2x2y﹣8y= .
15.(3分)在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是 .
16.(3分)已知点A、B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,且OA⊥OB,则tanB为 .
三、解答题(本大题有七题,其中第17题6分、第18题6分、第19题7分、第20题8分、第21题8分、第22题8分、第23题9分,共52分)解答应写出文字说明或演算步骤.
17.(6分)计算:﹣2﹣1+(﹣π)0﹣|﹣2|﹣2cos30°.
18.(6分)解不等式组并求它的整数解.
19.(7分)为贯彻政府报告中“大众创业、万众创新”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w<20),C类(20≤w<30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:
(1)该镇本次统计的小微企业总个数是 ,扇形统计图中B类所对应扇形圆心角的度数为 度,请补全条形统计图;
(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.
20.(8分)【阅读发现】如图①,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中△ADE≌△DFC,可知ED=FC,求得∠DMC= .
【拓展应用】如图②,在矩形ABCD(AB>BC)的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.
(1)求证:ED=FC.
(2)若∠ADE=20°,求∠DMC的度数.
21.(8分)某中学在百货商场购进了A、B两种品牌的篮球,购买A品牌蓝球花费了2400元,购买B品牌蓝球花费了1950元,且购买A品牌蓝球数量是购买B品牌蓝球数量的2倍,已知购买一个B品牌蓝球比购买一个A品牌蓝球多花50元.
(1)求购买一个A品牌、一个B品牌的蓝球各需多少元?
(2)该学校决定再次购进A、B两种品牌蓝球共30个,恰逢百货商场对两种品牌蓝球的售价进行调整,A品牌蓝球售价比第一次购买时提高了10%,B品牌蓝球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌蓝球的总费用不超过3200元,那么该学校此次最多可购买多少个B品牌蓝球?
22.(8分)如图,⊙O中,点A为中点,BD为直径,过A作AP∥BC交DB的延长线于点P.
(1)求证:PA是⊙O的切线;
(2)若,AB=6,求sin∠ABD的值.
23.(9分)如图,平面直角坐标系中,O为菱形ABCD的对称中心,已知C(2,0),D(0,﹣1),N为线段CD上一点(不与C、D重合).
(1)求以C为顶点,且经过点D的抛物线解析式;
(2)设N关于BD的对称点为N1,N关于BC的对称点为N2,求证:△N1BN2∽△ABC;
(3)求(2)中N1N2的最小值;
(4)过点N作y轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且∠PQA=∠BAC,求当PQ最小时点Q坐标.
深圳市南山区中考数学二模试卷
参考答案与试题解析
一、选择题:本题有12小题,每题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.
1.(3分)﹣5的倒数是( )
A. B. C.﹣5 D.5
【解答】解:∵(﹣5)×(﹣)=1,
∴﹣5的倒数是﹣.
故选:A.
2.(3分)人工智能AlphaGo因在人机大战中大胜韩国围棋手李世石九段而声名显赫.它具有自我对弈学习能力,决战前已做了两千万局的训练(等同于一个人近千年的训练量).此处“两千万”用科学记数法表示为( )
A.0.2×107 B.2×107 C.0.2×108 D.2×108
【解答】解:将“两千万”用科学记数法表示为:2×107,
故选:B
3.(3分)方程x2﹣4x+4=0的根的情况是( )
A.有两个相等的实数根 B.只有一个实数根
C.没有实数根 D.有两个不相等的实数根
【解答】解:∵a=1,b=﹣4,c=4,
∴△=b2﹣4ac=16﹣16=0,
∴一元二次方程有两个相等的实数根.
故选A.
4.(3分)如图是由七个相同的小正方体堆砌而成的几何体,则这个几何体的俯视图是( )
A. B. C. D.
【解答】解:从上面看易得左边第一列有2个正方形,中间第二列最有2个正方形,最右边一列有1个正方形在右上角处.
故选C.
5.(3分)下列等式成立的是( )
A.(a+4)(a﹣4)=a2﹣4 B.2a2﹣3a=﹣a C.a6÷a3=a2 D.(a2)3=a6
【解答】解:A、原式=a2﹣16,不成立;
B、原式不能合并,不成立;
C、原式=a3,不成立;
D、原式=a6,成立.
故选D.
6.(3分)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是( )
A. B. C. D.
【解答】解:∵PB+PC=BC,
而PA+PC=BC,
∴PA=PB,
∴点P在AB的垂直平分线上,
即点P为AB的垂直平分线与BC的交点.
故选D.
7.(3分)如图,l1∥l2,l3⊥l4,∠1=42°,那么∠2的度数为( )
A.48° B.42° C.38° D.21°
【解答】解:如图,∵l1∥l2,∠1=42°,
∴∠3=∠1=42°,
∵l3⊥l4,
∴∠2=90°﹣∠3=48°.
故选A.
8.(3分)关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是( )
A.m≥2 B.m≤2 C.m>2 D.m<2
【解答】解:由mx﹣1=2x,
移项、合并,得(m﹣2)x=1,
∴x=.
∵方程mx﹣1=2x的解为正实数,
∴>0,
解得m>2.
故选C.
9.(3分)如图,已知二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A(3,2),与x轴交于点B(2,0),若y1<y2,则x的取值范围是( )
A.0<x<2 B.0<x<3 C.2<x<3 D.x<0或x>3
【解答】解:如图所示:若y1<y2,则二次函数图象在一次函数图象的下面,
此时x的取值范围是:0<x<3.
故选:B.
10.(3分)如图,一根电线杆的接线柱部分AB在阳光下的投影CD的长为1米,太阳光线与地面的夹角∠ACD=60°,则AB的长为( )
A.米 B.米 C.米 D.米
【解答】解:设直线AB与CD的交点为点O.
∴.
∴AB=.
∵∠ACD=60°.
∴∠BDO=60°.
在Rt△BDO中,tan60°=.
∵CD=1.
∴AB=.
故选B.
11.(3分)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,此时点C恰好在线段DE上,若∠B=40°,∠CAE=60°,则∠DAC的度数为( )
A.15° B.20° C.25° D.30°
【解答】解:由旋转的性质得:△ADE≌△ABC,
∴∠D=∠B=40°,AE=AC,
∵∠CAE=60°,
∴△ACE是等边三角形,
∴∠ACE=∠E=60°,
∴∠DAE=180°﹣∠E﹣∠D=80DU
=(180°﹣∠CAE)=(180°﹣60°)=80°,
∴∠DAC=∠DAE﹣∠CAE=80°﹣60°=20°;
故选:B.
12.(3分)如图,Rt△ABC中,∠C=90°,AC=6,BC=8,AD平分∠BAC,则点B到AD的距离是( )
A.3 B.4 C.2 D.
【解答】解:过点D作DE⊥AB交AB于E,
设CD=x,则BD=8﹣x,
∵AD平分∠BAC,
∴,即,
∴x=3,
∴CD=3,
∴S△ABD=AB•DE=3=15,
∵AD==3,
设BD到AD的距离是h,
∴S△ABD=AD•h,
∴h=2.
故选C.
二、填空题:本题共4小题,每小题分,共12分,把答案填在答题卡上
13.(3分)某校在进行“阳光体育活动”中,统计了7位原来偏胖的学生的情况,他们的体重分别降低了5,9,3,10,6,8,5(单位:kg),则这组数据的中位数是 6 .
【解答】解:数据按从小到大排列后为3,5,5,6,8,9,10,
故这组数据的中位数是6.
故答案为:6.
14.(3分)分解因式:2x2y﹣8y= 2y(x+2)(x﹣2) .
【解答】解:2x2y﹣8y,
=2y(x2﹣4),
=2y(x+2)(x﹣2).
故答案为:2y(x+2)(x﹣2).
15.(3分)在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是 5 .
【解答】解:∵一个容量为50的样本,
把它分成6组,
第一组到第四组的频数分别为6,8,9,12,
第五组的频率是0.2,则第五组的频数是0.2×50=10,
∴第六组的频数是50﹣6﹣8﹣9﹣10﹣12=5.
故答案为:5.
16.(3分)已知点A、B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,且OA⊥OB,则tanB为 .
【解答】解:过A作AC⊥y轴,过B作BD⊥y轴,可得∠ACO=∠BDO=90°,
∴∠AOC+∠OAC=90°,
∵OA⊥OB,
∴∠AOC+∠BOD=90°,
∴∠OAC=∠BOD,
∴△AOC∽△OBD,
∵点A、B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,
∴S△AOC=1,S△OBD=4,
∴S△AOC:S△OBD=1:4,即OA:OB=1:2,
则在Rt△AOB中,tan∠ABO=.
故答案为:
三、解答题(本大题有七题,其中第17题6分、第18题6分、第19题7分、第20题8分、第21题8分、第22题8分、第23题9分,共52分)解答应写出文字说明或演算步骤.
17.(6分)计算:﹣2﹣1+(﹣π)0﹣|﹣2|﹣2cos30°.
【解答】解:原式=﹣+1﹣(2﹣)﹣2×
=﹣+1﹣2+﹣
=﹣.
18.(6分)解不等式组并求它的整数解.
【解答】解:,
由①得:x<8,
由②得:x≥6,
∴不等式组的解集为6≤x<8,
则不等式组的整数解为6,7.
19.(7分)为贯彻政府报告中“大众创业、万众创新”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w<20),C类(20≤w<30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:
(1)该镇本次统计的小微企业总个数是 25个 ,扇形统计图中B类所对应扇形圆心角的度数为 72 度,请补全条形统计图;
(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.
【解答】解:(1)该镇本次统计的小微企业总个数为4÷16%=25(个);
扇形统计图中B类所对应扇形圆心角的度数=×360°=72°
A类小微企业个数为25﹣5﹣14﹣=2(个),
补全条形统计图为:
故答案为25个,72;
(2)2个来自高新区的企业用A、B表示,2个来自开发区的企业用a、b表示,
画树状图为:
共有12种等可能的结果数,其中所抽取的2个发言代表都来自高新区的结果数为2,
所以所抽取的2个发言代表都来自高新区的概率==.
20.(8分)【阅读发现】如图①,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中△ADE≌△DFC,可知ED=FC,求得∠DMC= 90° .
【拓展应用】如图②,在矩形ABCD(AB>BC)的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.
(1)求证:ED=FC.
(2)若∠ADE=20°,求∠DMC的度数.
【解答】解:如图①中,∵四边形ABCD是正方形,
∴AD=AB=CD,∠ADC=90°,
∵△ADE≌△DFC,
∴DF=CD=AE=AD,
∵∠FDC=60°+90°=150°,
∴∠DFC=∠DCF=∠ADE=∠AED=15°,
∴∠FDE=60°+15°=75°,
∴∠MFD+∠FDM=90°,
∴∠FMD=90°,
故答案为90°
(1)∵△ABE为等边三角形,
∴∠EAB=60°,EA=AB.
∵△ADF为等边三角形,
∴∠FDA=60°,AD=FD.
∵四边形ABCD为矩形,
∴∠BAD=∠ADC=90°,DC=AB.
∴EA=DC.
∵∠EAD=∠EAB+∠BAD=150°,∠CDF=∠FDA+∠ADC=150°,
∴∠EAD=∠CDF.
在△EAD和△CDF中,
,
∴△EAD≌△CDF.
∴ED=FC;
(2)∵△EAD≌△CDF,
∴∠ADE=∠DFC=20°,
∴∠DMC=∠FDM+∠DFC=∠FDA+∠ADE+∠DFC=60°+20°+20°=100°.
21.(8分)某中学在百货商场购进了A、B两种品牌的篮球,购买A品牌蓝球花费了2400元,购买B品牌蓝球花费了1950元,且购买A品牌蓝球数量是购买B品牌蓝球数量的2倍,已知购买一个B品牌蓝球比购买一个A品牌蓝球多花50元.
(1)求购买一个A品牌、一个B品牌的蓝球各需多少元?
(2)该学校决定再次购进A、B两种品牌蓝球共30个,恰逢百货商场对两种品牌蓝球的售价进行调整,A品牌蓝球售价比第一次购买时提高了10%,B品牌蓝球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌蓝球的总费用不超过3200元,那么该学校此次最多可购买多少个B品牌蓝球?
【解答】解:(1)设购买一个A品牌的篮球需x元,则购买一个B品牌的篮球需(x+50)元,由题意得
=×2,
解得:x=80,
经检验x=80是原方程的解,
x+50=130.
答:购买一个A品牌的篮球需80元,购买一个B品牌的篮球需130元.
(2)设此次可购买a个B品牌篮球,则购进A品牌篮球(30﹣a)个,由题意得
80×(1+10%)(30﹣a)+130×0.9a≤3200,
解得a≤19,
∵a是整数,
∴a最大等于19,
答:该学校此次最多可购买19个B品牌蓝球.
22.(8分)如图,⊙O中,点A为中点,BD为直径,过A作AP∥BC交DB的延长线于点P.
(1)求证:PA是⊙O的切线;
(2)若,AB=6,求sin∠ABD的值.
【解答】(1)证明:连结AO,交BC于点E.
∵点A是的中点
∴AO⊥BC,
又∵AP∥BC,
∴AP⊥AO,
∴AP是⊙O的切线;
(2)解:∵AO⊥BC,,
∴,
又∵AB=6
∴,
∵OA=OB
∴∠ABD=∠BAO,
∴.
23.(9分)如图,平面直角坐标系中,O为菱形ABCD的对称中心,已知C(2,0),D(0,﹣1),N为线段CD上一点(不与C、D重合).
(1)求以C为顶点,且经过点D的抛物线解析式;
(2)设N关于BD的对称点为N1,N关于BC的对称点为N2,求证:△N1BN2∽△ABC;
(3)求(2)中N1N2的最小值;
(4)过点N作y轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且∠PQA=∠BAC,求当PQ最小时点Q坐标.
【解答】解:(1)由已知,设抛物线解析式为y=a(x﹣2)2
把D(0,﹣1)代入,得a=﹣
∴y=﹣(x﹣2)2
(2)如图1,连结BN.
∵N1,N2是N的对称点
∴BN1=BN2=BN,∠N1BD=∠NBD,∠NBC=∠N2BC
∴∠N1BN2=2∠DBC
∵四边形ABCD是菱形
∴AB=BC,∠ABC=2∠DBC
∴∠ABC=∠N1BN2,
∴△ABC∽△N1BN2
(3)∵点N是CD上的动点,
∴点到直线的距离,垂线段最短,
∴当BN⊥CD时,BN最短.
∵C(2,0),D(0,﹣1)
∴CD=,
∴BNmin==,
∴BN1min=BNmin=,
∵△ABC∽△N1BN2
∴,
N1N2min=,
(4)如图2,
过点P作PE⊥x轴,交AB于点E.
∵∠PQA=∠BAC
∴PQ1∥AC
∵菱形ABCD中,C(2,0),D(0,﹣1)
∴A(﹣2,0),B(0,1)
∴lAB:y=x+1
不妨设P(m,﹣(m﹣2)2),则E(m,m+1)
∴PE=m2﹣m+2
∴当m=1时,,
∴Q(﹣,﹣).
此时,PQ1最小,最小值为=,
∴PQ1=PQ2=.
2023年广东省深圳市南山区部分学校中考数学二模试卷(含解析): 这是一份2023年广东省深圳市南山区部分学校中考数学二模试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年广东省深圳市南山区中考数学二调试卷: 这是一份2023年广东省深圳市南山区中考数学二调试卷,共31页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2022年广东省深圳市南山区中考数学三模试卷: 这是一份2022年广东省深圳市南山区中考数学三模试卷,共26页。