![2022年安徽省安庆市九年级毕业班中考模拟数学试题(word版含答案)第1页](http://www.enxinlong.com/img-preview/2/3/12920033/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年安徽省安庆市九年级毕业班中考模拟数学试题(word版含答案)第2页](http://www.enxinlong.com/img-preview/2/3/12920033/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年安徽省安庆市九年级毕业班中考模拟数学试题(word版含答案)第3页](http://www.enxinlong.com/img-preview/2/3/12920033/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022年安徽省安庆市九年级毕业班中考模拟数学试题(word版含答案)
展开
这是一份2022年安徽省安庆市九年级毕业班中考模拟数学试题(word版含答案),共11页。试卷主要包含了 已知, 观察下列等式, 解等内容,欢迎下载使用。
2022年安庆市中考模拟考试数学试题命题:安庆市中考命题研究课题组注意事项:1.你拿到的试卷满分150分,考试时间为120分钟。2.请务必在“答题卷”上答题,在“试题卷”上答题是无效的。一、选择题(本大题共10小题,每小题4分,满分40分)1.-6的相反数是A.6 B. C. D.2.下列计算正确的是A. B. C. D. 3.2022年1月31日,农历除夕,中国人首次在距离地球约396000米的“中国宫”里迎新春、过大年。神舟十三号航天员在遥远的太空专门发来视频,向祖国和人民送上祝福.数据396000用科学记数法表示为A. B. C. D. 4.如图所示的几何体是由一块大正方体截去一个小正方体得到的,该几何体的主视图是A. B. C. D. 第4题图5.如图所示,已知AB//CD,EF平分∠CEG,若∠1=70°,则∠GFE的度数为A. B. C.55 D.706.某市中考体育项目有:中长跑(1000米男生、800米女生)、坐位体前屈、立定跳远、一分钟跳绳、掷实心球、篮球运球、足球运球.其中中长跑设定为必考项目,考生可以在余下六个项目中自主选择2个不同的项目进行考试,则恰好选中坐位体前屈和一分钟跳绳的概率是 A. B. C. D.7.某工厂计划用两年时间使产值增加到目前的3倍,并且使第二年增长率是第一年增长率的2倍,设第一年增长率为,则可列方程得A. B. C. D. 8.已知,为不同的两个实数,且满足, ,当 为整数时,的值为 A.或2 B. C.或2 D.或29.如图, ⊙O的半径为3,边长为2的正六边形ABCDEF的中心与O重合, M、N分别是AB、FA的延长线与⊙O的交点, 则图中阴影部分的面积是 A. B.C. D. 10. 已知:抛物线与轴交于A,B两点(点A在点B的左侧),与轴交于点C.平行于轴的直线与该抛物线交于点D(),E(),与线段AC交于点F(),令 , 则的取值范围是A. B. C. D. 二、填空题(本大题共4小题,每小题5分,满分20分)11.化简:= .12.因式分解: .13.如图,已知A, B是函数(x>0)图象上的两点,点B位于点A的左侧,AM ,BN均垂直于x轴,垂足为点M,N,连接AO,交BN于点E,若,四边形AMNE的面积为2,则k的值为 . 14.如图,在△ABC中, AC=4,∠CAB=45°, ∠ACB=60°, D是AB的中点, 直线l经过点D,AE⊥l于点E,CF⊥l于点F.(1)若l⊥AB, 则AE+CF= ;(2)当直线l绕点D旋转时,AE+CF的最大值为 .三、(本大题共2小题,每小题8分,满分16分) 15.解不等式:. 16.电影《水门桥》正在热映,票价每张40元,购买50人以上的团体票,有两种优惠方案可供选择,方案一:全体人员可打折;方案二:人免票,其余人员打9折,901班共有54人,无论选择哪种优惠方案购票观看,所付费用相同,求优惠方案二中的免票人数. 四、(本大题共2小题,每小题8分,满分16分)17. 观察下列等式:第1个等式:;第2个等式:;第3个等式:;第4个等式:;…根据你观察到的规律,解决下列问题:(1)请写出第5个等式: ;(2)请写出第n个等式 用含n的等式表示,并证明. 18.如图,在边长是1个单位长度的小正方形组成的43网格中,给出了以格点(网格线的交点)为端点的线段AB.(1)将线段AB绕点A顺时针旋转90得到线段,请画出线段;(2)作出点A关于直线的对称点,并画出四边形;(3)以格点为顶点的四边形称为“格点四边形”,在所给的网格中,还能作出 个与四边形全等的“格点四边形”(不作图). 第18题图 五、(本大题共2小题,每小题10分,满分20分)19.坐落在长江边上的安庆振风塔号称“万里长江第一塔”,塔七层八角.如图,为了测量楼层的高度,在4楼底部“塔的中轴线上点B处”测得地面上点P的俯角为35°,在5楼底部“塔的中轴线上点A处”测得点P的俯角为40°,已知塔基直径MN为20米,点P到塔基边缘的最近距离PM为30米,求塔的第4层高度AB.(参考数据:,) 第19题图20.如图,四边形ABCD内接于⊙O,对角线AC与BD相交于点E,直线AM与⊙O相切于点A,交CB延长线于M,弦BD∥AM.(1)求证:∠MAB=∠ACD;(2)若AB=5,BD=8,求⊙O的半径. 第20题图 六、(本题满分12分)21.为落实课后服务工作的相关要求,某学校于周一下午同时开设了四门特色课程供七年级学生选择(每个学生必选且只选一门):A.花样跳绳;B.趣味地理;C.创意剪纸;D.音乐欣赏.该校七年级学生共有450人,全体七年级学生的选课情况统计如图①. (1)求该校七年级学生中选择A课程的学生共有多少人?(2)为了解A课程的学习效果,对七年级选择A课程的所有学生进行了一次“30秒跳绳”成绩检测,并从中随机抽取了30名学生的“30秒跳绳”成绩进行统计,将他们的成绩绘制成频数分布直方图(如图②).① 其中这一组的数据为75,72,73,74,77,77,79,则这组数据的中位数是 ,众数是 ;② 根据以上信息,估计七年级选择A课程的所有学生本次检测的“30秒跳绳”成绩超过77个的有多少人? 七、(本题满分12分) 22.如图所示,“大跳台滑雪”运动中,运动员的起跳高度OA为86米,在平面直角坐标系xOy中,运动员自“起跳点A”起跳后的运行轨迹(图中虚线部分)的表达式为(a<0),线段MN为“着落坡”,其表达式为,“着落坡”上的起评分点为“K点”,“K点”离y轴的水平距离是115米.评分规则规定:当运动员的着落点H离y轴的水平距离与“K点”离y轴的水平距离之差为m米时,该运动员所得的“距离分”为.(1)某运动员的“距离分”为69分,求该运动员的着落点H离y轴的水平距离;(2)当运动员的“距离分”为69分时,a的值是多少?(3)当运动员的“距离分”为69分时,运动员运行的最高点离x轴的距离是多少? 第22题图八、(本题满分14分)23.如图①,在菱形ABCD中,∠BAD=60°,点E在边AB上,点F在BD的延长线上,BE=DF,EF与AD相交于点G,连接CE,CF.(1)求证: CE=CF;(2)求证:△DFG∽△DCF; (3)如图②,连接CG,若AB=4,点E是AB的中点,求 CG长.
2022年安庆市中考模拟考试数学试题参考答案一、选择题(本大题共10小题,每小题4分,满分40分)题号12345678910答案ABADCDDABC二、填空题(本大题共4小题,每小题5分,满分20分)11. ; 12. ; 13. ; 14. (1); (2)4.三、(本大题共2小题,每小题8分,满分16分)15.解:去分母,得2x3-x ,
移项,得 2x+x3 ,
合并同类项,得:3x3 ,
系数化为1,得:x1.16.解:根据题意,得:54400.8=(54-n) 0.940,
解得:6.答:免票人数是6人.17.解:(1); (2); 证明:左边 ∴左边=右边. ∴等式成立.四、(本大题共2小题,每小题8分,满分16分)18. 解:(1)如图所示,线段即为所作;(2)如图所示,点,四边形即为所作;(3)3.五、(本大题共2小题,每小题10分,满分20分)19. 解:由题意知:∠APO=40°,∠BPO=35°,OM= =10m. ∴OP= OM+MP=40m. 在Rt△AOP中,∠AOP=90°,OA=OPtan∠APO400.84=33.6m. 在Rt△BOP中,∠BOP=90°,OB=OPtan∠BPO400.70=28m. ∴AB=AO-BO=5.6m.∴塔的第4层高度AB为5.6m. 20.解:(1)∵BD∥AM∴∠MAB=∠ABD又∵弧AD=弧AD∴∠ACD=∠ABD∴∠MAB=∠ACD(2)如图,连接OA交BD于点G,连接OB. ∵直线AM与⊙O相切∴OA⊥AM∵BD∥AM.∴OA⊥BD∴BG=BD=4在Rt△ABG中,AG=设⊙O的半径为r.∴OG=OAAG=r3在Rt△OBG中,即∴六、(本题满分12分)21.解:(1)450(125%20%15%)=180(人) 答:该校七年级学生中选择A课程的学生共有180人. (2)①75,77; ② (人)答:七年级选择A课程的所有学生本次检测的“30秒跳绳”成绩超过77个的有84人.七、(本题满分12分)22. 解:(1)由,得.该运动员的着落点H离y轴的水平距离为:115+5=120(米).(2)当时,,得.把H点坐标代入,得,解得.(3)由(1)(2)知,当运动员的“距离分”为69分时,运动员的运行轨迹为抛物线.配方得 ,当x=24时,y取得最大值90.8,即运动员运行的最高点离x轴的距离是90.8米. 八、(本题满分14分)23.解:(1)在菱形ABCD中,∠BAD=60°∴BC=CD,∠EBC=120°,∠DCB=60°∴△CDB为等边三角形∴∠FDC=∠EBC=120°又∵BE=CF∴△EBC≌△FDC(SAS)∴ CE=CF.(2)由(1)可得△EBC≌△FDC∴∠ECB=∠FCD∴∠ECF=∠FCD+∠ECD=∠ECB+∠ECD=60°∴△ECF为等边三角形∴∠CFG=60° ∴∠GFD+∠CFD=60°又 ∠FCD+∠CFD=60°∴∠GFD=∠FCD又∠FDG=∠CDF=120°∴△DFG∽△DCF .(3)解法一:如图,过点E作EH⊥CB于点H.∵AB=4,点E是AB的中点∴BE=DF=2由(2)可知:△DFG∽△DCF∴∴∴G为EF中点 ∴CG⊥EF∴BH=在Rt△EHC中,CH=5∴.解法二:如图,过点C作CP⊥AD于点P,则∠DCP=60° ∵AB=4,点E是AB的中点∴BE=DF=2由(2)可知:△DFG∽△DCF∴∴DG=1∴GP=3在Rt△CPG中,.解法三:如图,过点G作GK⊥AB于点K.∵AB=4,点E是AB的中点∴BE=DF=2由(2)可知:△DFG∽△DCF∴∴,DG=1∴G为EF中点,AG=3∴CG⊥EF在Rt△AGK中,AK=,.KE=AE-AK= 在Rt△GKE中 = 在Rt△CGE中∴.
相关试卷
这是一份2023年安徽省安庆市中考九年级数学模拟卷,共6页。
这是一份安徽省肥东县2023年初中毕业班中考模拟考试数学试题,共8页。
这是一份2022年福建省福州十九中九年级毕业班模拟考数学试题(word版含答案),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。