所属成套资源:2022年中考数学三轮冲刺《压轴题专练》冲刺练习(含答案)
2022年中考数学三轮冲刺《压轴题专练》冲刺练习四(含答案)
展开
这是一份2022年中考数学三轮冲刺《压轴题专练》冲刺练习四(含答案),共9页。
2022年中考数学三轮冲刺《压轴题专练》冲刺练习四1.如图1,抛物线y=ax2+bx+4过A(2,0)、B(4,0)两点,交y轴于点C,过点C作x轴的平行线与抛物线上的另一个交点为D,连接AC、BC.点P是该抛物线上一动点,设点P的横坐标为m(m>4).(1)求该抛物线的表达式和∠ACB的正切值;(2)如图2,若∠ACP=45°,求m的值;(3)如图3,过点A、P的直线与y轴于点N,过点P作PM⊥CD,垂足为M,直线MN与x轴交于点Q,试判断四边形ADMQ的形状,并说明理由. 2.已知二次函数y=ax2+(2a+1)x+2(a<0).(1)求证:二次函数的图象与x轴有两个交点;(2)当二次函数的图象与x轴的两个交点的横坐标均为整数,且a为负整数时,求a的值及二次函数的解析式并画出二次函数的图象(不用列表,只要求用其与x轴的两个交点A,B<A在B的左侧>,与y轴的交点C及其顶点D这四点画出二次函数的大致图象,同时标出A,B,C,D的位置);(3)在(2)的条件下,二次函数的图象上是否存在一点P使∠PCA=75°?如果存在,求出点P的坐标;如果不存在,请说明理由. 3.如图,抛物线y=﹣x2+bx+c与x轴相交于A,B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0),C(0,3),点M是抛物线的顶点.(1)求抛物线的解析式;(2)点P的线段MB上一个动点,过点P作PD⊥x轴与点D,若△PCD的面积为S,试判断S有无最大值?若有,求出这个最大值;(3)在(2)的条件下,线段MB上是否存在点P,△PCD为直角三角形?如果存在,请直接写出点P的坐标,如果不存在,请说明理由. 4.抛物线y=ax2+bx+2与x轴交于点A(﹣3,0)、B(1,0),与y轴交于点C.(1)求抛物线的解析式(2)在抛物线对称轴上找一点M,使△MBC的周长最小,并求出点M的坐标和△MBC的周长(3)若点P是x轴上的一个动点,过点P作PQ∥BC交抛物线与点Q,在抛物线上是否存在点Q,使B、C、P、Q为顶点的四边形为平行四边形?若存在请求出点Q的坐标,若不存在请说明理由. 5.平面直角坐标系xOy中,点A、B的横坐标分别为a、a+2,二次函数y=﹣x2+(m﹣2)x+2m的图象经过点A、B,且a、m满足2a﹣m=d(d为常数).(1)若一次函数y1=kx+b的图象经过A、B两点.①当a=1、d=﹣1时,求k的值;②若y随x的增大而减小,求d的取值范围;(2)当d=﹣4且a≠﹣2、a≠﹣4时,判断直线AB与x轴的位置关系,并说明理由;(3)点A、B的位置随着a的变化而变化,设点A、B运动的路线与y轴分别相交于点C、D,线段CD的长度会发生变化吗?如果不变,求出CD的长;如果变化,请说明理由.
0.2022年中考数学三轮冲刺《压轴题专练》冲刺练习四(含答案)答案解析 一 、综合题1.解:(1)将点A(2,0)和点B(4,0)分别代入y=ax2+bx+4,得,解得:.∴该抛物线的解析式为y=x2﹣3x+4.过点B作BG⊥CA,交CA的延长线于点G(如图1所示),则∠G=90°.∵∠COA=∠G=90°,∠CAO=∠BAG,∴△GAB∽△OAC.∴=═=2.∴BG=2AG.在Rt△ABG中,∵BG2+AG2=AB2,∴(2AG)2+AG2=22.解得: AG=.∴BG=0.8,CG=AC+AG=2+=.在Rt△BCG中,tan∠ACB═=.(2)如图2,过点B作BH⊥CD于点H,交CP于点K,连接AK.易得四边形OBHC是正方形.应用“全角夹半角”可得AK=OA+HK.设K(4,h),则BK=h,HK=HB﹣KB=4﹣h,AK=OA+HK=2+(4﹣h)=6﹣h.在Rt△ABK中,由勾股定理,得AB2+BK2=AK2.∴22+h2=(6﹣h)2.解得h=.∴点K(4,).设直线CK的解析式为y=hx+4.将点K(4,)代入上式,得=4h+4.解得h=﹣.∴直线CK的解析式为y=﹣x+4.设点P的坐标为(x,y),则x是方程x2﹣3x+4=﹣x+4的一个解.将方程整理,得3x2﹣16x=0.解得x1=,x2=0(不合题意,舍去).将x1=代入y=﹣x+4,得y=.∴点P的坐标为(,).(3)四边形ADMQ是平行四边形.理由如下:∵CD∥x轴,∴yC=yD=4.将y=4代入y=x2﹣3x+4,得4=x2﹣3x+4.解得x1=0,x2=6.∴点D(6,4).根据题意,得P(m, m2﹣3m+4),M(m,4),H(m,0).∴PH=m2﹣3m+4,OH=m,AH=m﹣2,MH=4.①当4<m<6时,DM=6﹣m,如图3,∵△OAN∽△HAP,∴=.∴=.∴ON===m﹣4.[来源:学&科&网Z&X&X&K]∵△ONQ∽△HMQ,[来源:学科网]∴=.∴=.∴=.∴OQ=m﹣4.∴AQ=OA﹣OQ=2﹣(m﹣4)=6﹣m.∴AQ=DM=6﹣m.又∵AQ∥DM,∴四边形ADMQ是平行四边形.②当m>6时,同理可得:四边形ADMQ是平行四边形.综上,四边形ADMQ是平行四边形. 2.解:(1)△=(2a+1)2-8a=4a2-4a+1=(2a-1)2,因为a<0,所以(2a-1)2>0,所以二次函数的图象与x轴有两个交点(2)设二次函数图象与x轴交点坐标为(x1,0),(x2,0),依题意有x1x2=,x1+x2=,因为a为负整数,且和均为整数,所以a=-1,此时二次函数解析式为y=-x2-x+2,令y=0,即-x2-x+2=0,解得x1=1,x2=-2,所以A点坐标为(-2,0),B点坐标为(1,0),C点坐标为(0,2),D点坐标为(,)(3)假设存在点P符合要求,如图,过点P1作P1E⊥y轴于点E,则∠ECP1=30°,设点P(a,b),则,b=2-a,因为点(a,b)在二次函数图象上,所以2-a=-a2-a+2,解得a=-1,b=-1,所以P1的坐标为(-1,-1)若点P位于C点上方时,过点C作CG∥x轴,过P2作P2F⊥CG交CG于点F,则∠P2CF=30°,,设点P2(a,b),则,3b-6=-a,b=2-a,又点P2(a,b)在抛物线上,2-a=-a2-a+2,解得a=,b=,此时点P2的坐标为(,)综上,存在符合条件的点P满足条件,此时点P的坐标为P1(-1,-1)和P2(,). 3.解:(1)把B(3,0),C(0,3)代入y=﹣x2+bx+c,得,解得,所以抛物线解析式为y=﹣x2+2x+3;(2)S有最大值.理由如下:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴M(1,4),设直线BM的解析式为y=kx+n,把B(3,0),M(1,4)代入得,解得,∴直线BM的解析式为y=﹣2x+6,设OD=m,∴P(m,﹣2m+6)(1≤m<3),∴S=•m•(﹣2m+6)=﹣m2+3m=﹣(m﹣)2+,∵1≤m<3,∴当m=时,S有最大值,最大值为;(3)存在.∠PDC不可能为90°;当∠DPC=90°时,则PD=OC=3,即﹣2m+6=3,解得m=,此时P点坐标为(,3),当∠PCD=90°时,则PC2+CD2=PD2,即m2+(﹣2m+3)2+32+m2=(﹣2m+6)2,整理得m2+6m﹣9=0,解得m1=﹣3﹣3(舍去),m2=﹣3+3,当m=﹣3+3时,y=﹣2m+6=6﹣6+6=12﹣6,此时P点坐标为(﹣3+3,12﹣6),综上所述,当P点坐标为(,3)或(﹣3+3,12﹣6)时,△PCD为直角三角形. 4.解:(1)将A(﹣3,0),B(1,0)代入y=ax2+bx+2,得:,解得:,∴抛物线的解析式为y=﹣x2﹣x+2.(2)当x=0时,y=﹣x2﹣x+2=2,∴点C的坐标为(0,2).∵抛物线的解析式为y=﹣x2﹣x+2,∴抛物线的对称轴为直线x=﹣1.连接AC,交抛物线对称轴于点M,如图1所示.∵点A,B关于直线x=﹣1对称,∴MA=MB,∴MB+MC=MA+MC=AC,∴此时△MBC的周长取最小值.∵点A的坐标为(﹣3,0),点B的坐标为(1,0),点C的坐标为(0,2),∴AC=,BC=,直线AC的解析式为y=x+2(可用待定系数法求出来).当x=﹣1时,y=x+2=,∴当△MBC的周长最小时,点M的坐标为(﹣1,),△MBC的周长为+.(3)∵以B、C、P、Q为顶点的四边形为平行四边形,点B,P的纵坐标为0,点C的纵坐标为2,∴点Q的纵坐标为2或﹣2,如图2所示.当y=2时,﹣x2﹣x+2=2,解得:x1=﹣2,x2=0(舍去),∴点Q的坐标为(﹣2,2);当y=﹣2时,﹣x2﹣x+2=﹣2,解得:x1=﹣4,x2=2,∴点Q的坐标为(﹣4,﹣2)或(2,﹣2).∴在抛物线上存在点Q,使B、C、P、Q为顶点的四边形为平行四边形,点Q的坐标为(﹣2,2)或(﹣4,﹣2)或(2,﹣2). 5.解:(1)①当a=1、d=﹣1时,m=2a﹣d=3,所以二次函数的表达式是y=﹣x2+x+6.∵a=1,∴点A的横坐标为1,点B的横坐标为3,把x=1代入抛物线的解析式得:y=6,把x=3代入抛物线的解析式得:y=0,∴A(1,6),B(3,0).将点A和点B的坐标代入直线的解析式得:,解得:,所以k的值为﹣3.②∵y=﹣x2+(m﹣2)x+2m=﹣(x﹣m)(x+2),∴当x=a时,y=﹣(a﹣m)(a+2);当x=a+2时,y=﹣(a+2﹣4)(a+4),∵y1随着x的增大而减小,且a<a+2,∴﹣(a﹣m)(a+2)>﹣(a+2﹣m)(a+4),解得:2a﹣m>﹣4,[来源:Z#xx#k.Com]又∵2a﹣m=d,∴d的取值范围为d>﹣4.(2)∵d=﹣4且a≠﹣2、a≠﹣4,2a﹣m=d,∴m=2a+4.∴二次函数的关系式为y=﹣x2+(2a+2)x+4a+8.把x=a代入抛物线的解析式得:y=a2+6a+8.把x=a+2代入抛物线的解析式得:y=a2+6a+8.∴A(a,a2+6a+8)、B(a+2,a2+6a+8).∵点A、点B的纵坐标相同,∴AB∥x轴.(3)线段CD的长度不变.∵y=﹣x2+(m﹣2)x+2m过点A、点B,2a﹣m=d,∴y=﹣x2+(2a﹣d﹣2)x+2(2a﹣d).∴yA=﹣a2+(2﹣d)a﹣2d,yB=a2+(2﹣d)a﹣4d﹣8.∵把a=0代入yA=﹣a2+(2﹣d)a﹣2d,得:y=﹣2d,∴C(0,﹣2d).∵点D在y轴上,即a+2=0,∴a=﹣2,.把a=﹣2代入yB=a2+(2﹣d)a﹣4d﹣8得:y=﹣2d﹣8.∴D(0,﹣2d﹣8).∴DC=|﹣2d﹣(﹣2d﹣8)|=8.∴线段CD的长度不变.
相关试卷
这是一份2022年中考数学三轮冲刺《压轴题专练》冲刺练习十(含答案),共7页。试卷主要包含了25x2;等内容,欢迎下载使用。
这是一份2022年中考数学三轮冲刺《压轴题专练》冲刺练习三(含答案),共8页。试卷主要包含了5时x的值;等内容,欢迎下载使用。
这是一份2022年中考数学三轮冲刺《压轴题专练》冲刺练习七(含答案),共8页。试卷主要包含了25b2﹣2b,问等内容,欢迎下载使用。