所属成套资源:2022年中考数学二轮专题练习(含答案)
2022年中考数学二轮专题《动态几何问题》(含答案)
展开这是一份2022年中考数学二轮专题《动态几何问题》(含答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年中考数学二轮专题
《动态几何问题》
一 、选择题
1.如图,正方形ABCD的边长为2 cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是( )
2.如图,是一对变量满足的函数关系的图象.有下列3个不同的问题情境:
①小明骑车以400米/分的速度匀速骑了5分钟,在原地休息了4分钟,然后以500米/分的速度匀速骑回出发地,设时间为x分钟,离出发地的距离为y千米;
②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个桶注水,注5分钟后停止,等4分钟后,再以2升/分的速度匀速倒空桶中的水,设时间为x分钟,桶内的水量为y升;
③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0,
其中,符合图中所示函数关系的问题情境的个数为( )
A.0 B.1 C.2 D.3
3.如图,正方形ABCD的边长为4cm,动点P从点A出发,沿A→D→C的路径以每秒1cm的速度运动(点P不与点A、点C重合),设点P运动时间为x秒,四边形ABCP的面积为ycm2,则下列图象能大致反映y与x的函数关系的是( )
A. B. C. D.
4.如图1,在矩形ABCD中,动点E从点B出发,沿BADC方向运动至点C处停止,设点E运动的路程为x,△BCE的面积为y,如果y关于x的函数图象如图2所示,则当x=7时,点E应运动到( )
A.点C处 B.点D处 C.点B处 D.点A处
5.如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD于G,下列有四个结论:
①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值.
其中正确的结论有( )
A.①②③ B.①②④ C.①③④ D.①②③④
6.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )
A. B. C. D.
7.如图,在平面直角坐标系中,矩形ABCD的边BC在x轴上,点D的坐标为(﹣2,6),点B是动点,反比例函数y=(x<0)经过点D,若AC的延长线交y轴于点E,连接BE,则△BCE的面积为( )
A.3 B.5 C.6 D.7
8.如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间函数关系可以用图象表示为( )
A.B. C.D.
二 、填空题
9.如图,正方形ABCD的长为8cm,E、F、G、H分别是AB、BC、CD、DA上的动点,且AE=BF=CG=DH,则四边形EFGH面积的最小值是 cm2.
10.如图,在边长为2的正方形ABCD中,P为AB的中点,Q为边CD上一动点,线段PQ的垂直平分线分别交边AD、BC于点M、N,顺次连接P、M、Q、N,则四边形PMQN的面积的最大值 .
11.如图,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P从点A开始沿边AB向点B以2 mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向点C以4 mm/s的速度移动(不与点C重合).如果P,Q分别从A,B同时出发,那么经过 s,四边形APQC的面积最小.
12.如图,在Rt△ABC 中,∠ACB=90°,AC=6,BC=8,点D是线段AB上的动点,M、N分别是AD、CD的中点,连接MN,当点D由点A向点B运动的过程中,线段MN所扫过的区域的面积为 .
13.如图,已知动点A在函数y=(x>0)的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC,直线DE分别交x轴,y轴于点P,Q,当QE:DP=9:25时,图中的阴影部分的面积等于 .
14.如图,在Rt△ABC中,∠BAC=90°,AB=AC=16 cm,AD为BC边上的高,动点P从点A出发,沿A→D方向以 cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t s(0<t<8),则t=________时,S1=2S2.
三 、解答题
15.如图,⊙O的直径AB=4,点C为⊙O上的一个动点,连接OC,过点A作⊙O的切线,与BC的延长线交于点D,点E为AD的中点,连接CE.
(1)求证:CE是⊙O的切线;
(2)填空:
①当CE= 时,四边形AOCE为正方形;
②当CE= 时,△CDE为等边三角形.
16.如图,在矩形ABCD中,AB=3,BC=4,将对角线AC绕对角线交点O旋转,分别交边AD、BC于点E.F,点P是边DC上的一个动点,且保持DP=AE,连接PE.PF,设AE=x(0<x<3).
(1)填空:PC=_____,FC=_________;(用含x的代数式表示)
(2)求△PEF面积的最小值;
(3)在运动过程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,请说明理由.
17.如图,在平面直角坐标系中,面积为4的正方形OABC的顶点O与坐标原点重合,边OA、OC分别在x轴、y轴的正半轴上,点B、P都在函数y=(x>0)的图象上,过动点P分别作轴x、y轴的平行线,交y轴、x轴于点D、E.设矩形PDOE与正方形OABC重叠部分图形的面积为S,点P的横坐标为m.
(1)求k的值;
(2)用含m的代数式表示CD的长;
(3)求S与m之间的函数关系式.
18.如图,在四边形ABCD中,AD∥BC,AD=2,AB=2,以点A为圆心,AD为半径的圆与BC相切于点E,交AB于点F.
(1)求∠ABE的大小及的长度;
(2)在BE的延长线上取一点G,使得上的一个动点P到点G的最短距离为2-2,求BG的长.
0.答案解析
1.答案为:A.
2.答案为:C
3.答案为:D.
4.B
5.答案为:D;
6.答案为:A.
7.答案为:C.
8.答案为:B.
9.答案为:32.
10.答案为:2.5;
11.答案为:3.
12.答案为:12.
13.答案为:.
14.答案为:6.
15. (1)证明:如图,连接AC、OE.
∵AD为⊙O的切线,
∴∠OAE=90°.
∵AB为⊙O的直径,
∴∠ACB=90°,
∴△ACD是直角三角形.
∵点E是AD的中点,
∴EA=EC.
又OA=OC,OE=OE,
∴△OCE≌△OAE,
∴∠OAE=∠OCE=90°,即OC⊥CE,
∴CE是⊙O的切线.
(2)① 2;②.
16.解:(1)∵四边形ABCD是矩形[w~ww.zz#st^ep%.@com]
∴AD∥BC,DC=AB=3,AO=CO
∴∠DAC=∠ACB,且AO=CO,∠AOE=∠COF
∴△AEO≌△CFO(ASA)
∴AE=CF
∵AE=x,且DP=AE
∴DP=x,CF=x,DE=4﹣x,
∴PC=CD﹣DP=3﹣x
故答案为:3﹣x,x
(2)∵S△EFP=S梯形EDCF﹣S△DEP﹣S△CFP,
∴S△EFP=﹣﹣×x×(3﹣x)
=x2﹣x+6=(x﹣)2+[来源:^*中&%教网@]
∴当x=时,△PEF面积的最小值为
(3)不成立
理由如下:若PE⊥PF,则∠EPD+∠FPC=90°
又∵∠EPD+∠DEP=90°
∴∠DEP=∠FPC,且CF=DP=AE,∠EDP=∠PCF=90°
∴△DPE≌△CFP(AAS)
∴DE=CP
∴3﹣x=4﹣x则方程无解,
∴不存在x的值使PE⊥PF,即PE⊥PF不成立.
17.解(1)∵正方形OABC的面积4,
∴BA=BC=OA=OC=2.
∴点 B(2,2)
∵点B、P都在函数y=(x>0)的图象上
∴k=2×2=4
∴解析式y=
(2)∵点P在y=的图象上,且横坐标为m,
∴
当0<m≤2时,CD=﹣2
当m>2时,CD=2﹣
(3)当0<m≤2时,S=2m
当m>2时,S=2×=
18.解:(1)连接AE,如图,
∵以AD为半径的圆与BC相切于点E,
∴AE⊥BC,AE=AD=2.
在Rt△AEB中,AE=2,AB=2,
∴BE=2,即△ABE是等腰直角三角形,
∴∠ABE=45°.
∵AD∥BC,
∴∠DAB+∠ABE=180°,
∴∠DAB=135°,
∴的长度为=;
(2)如图,根据两点之间线段最短,可得当A,P,G三点共线时PG最短,
此时AG=AP+PG=2+2-2=2,
∴AG=AB.
∵AE⊥BG,
∴BE=EG.
∴BG=2BE=4.
相关试卷
这是一份中考数学二轮复习核心考点专题专题36几何动态性问题之动点问题含解析答案,共45页。
这是一份中考数学二轮专项培优专题09 动态几何定值问题(教师版),共65页。
这是一份专题37 几何动态性问题之动图问题-2023年中考数学二轮专题提升训练,共40页。试卷主要包含了动直线问题,动三角形问题,动矩形问题等内容,欢迎下载使用。