2020-2021学年18.2.3 正方形教课内容课件ppt
展开1.理解正方形与平行四边形、矩形、菱形概念之间的联系和区别;2.能用正方形的定义、性质和判定进行推理与计算学习重点: 正方形与平行四边形、矩形、菱形的联系.
1.正方形的四个角是____,四条边____,对角线______________,并且每一条对角线平分一组对角.2.正方形是____对称图形,它有____条对称轴3.有一组邻边相等并且有一个角是直角的______________是正方形.4.欲判定一个四边形是正方形,可以先判定这个四边形是矩形,再判定它还是___________;或者先判定四边形是菱形,再判定这个菱形也是____________.
平行四边形与矩形、菱形有什么联系?
回顾思考 提出问题
在小学,什么样的四边形是正方形? 四个角都是直角,四条边都相等的四边形叫正方形. 谈谈你对这个定义的理解?
现在,你对正方形有哪些新的认识? 正方形既是矩形又是菱形.
细心引导 探究新知
正方形既是特殊的矩形,又是特殊的菱形.正方形有哪些性质?
你能从这个变化过程中总结出一种正方形的判定方法吗?
活动1:你能否利用手中的矩形白纸裁出一个正方形呢?请你想好后与小组同学交流一下。
如图,某一拉门在完全关闭时,其相应的菱形变成正方形.请说说图中∠1的变化过程.你能从这个变化过程中总结出一种正方形的判定方法吗?
? 的矩形是正方形。
? 的菱形是正方形。
? 的平行四边形是正方形。
既是矩形又是菱形的四边形是正方形.
现在,你对正方形有哪些新的认识? 正方形既是矩形又是菱形.
例 求证: 正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.
证明:∵四边形ABCD是正方形, ∴AC=BD, AC⊥BD, AO=CO=BO=DO, ∴△ABO、△BCO、△CDO、△DAO 都是等腰直角三角形, 并且 △ABO ≌△BCO≌△CDO≌△DAO.
已知:四边形ABCD是正方形,对角线AC、BD相交于点O(如图). 求证:△ABO、△BCO、△CDO、△DAO是全等的等腰直角三角形.
判断下列命题是否正确.
(1)四条边都相等的四边形是正方形。
(2)四个角都相等的四边形是正方形
(3)四边相等,有一个角是直角的四边形是正方形.
(4)正方形是矩形. (5)一组邻边相等的平行四边形是正方形. (6)对角线互相垂直平分的四边形是正方形.
应用新知 解决问题
如图,顺次连接正方形ABCD各边的中点,得 到四边形EFGH.求证:四边形EFGH也是正方形.
变式 如图,E,F,G,H分别是正方形ABCD各边上的点,且AE=BF=CG=DH.四边形EFGH是正方形吗?为什么?
本节课学习了哪些内容?1、正方形的定义2、正方形的性质3、正方形的判定
初中人教版18.2.3 正方形备课课件ppt: 这是一份初中人教版18.2.3 正方形备课课件ppt,共19页。PPT课件主要包含了正方形的定义,例题赏析,教学反思,▲正方形有哪些性质,★从角上来谈,●从边上来谈,▲从对角线上来谈等内容,欢迎下载使用。
人教版八年级下册第十八章 平行四边形18.2 特殊的平行四边形18.2.3 正方形备课课件ppt: 这是一份人教版八年级下册第十八章 平行四边形18.2 特殊的平行四边形18.2.3 正方形备课课件ppt,共12页。PPT课件主要包含了学习目标,我实践我感悟,我自学我收获,我分享我快乐,我总结我提高,我思考我进步等内容,欢迎下载使用。
初中数学18.2.3 正方形说课课件ppt: 这是一份初中数学18.2.3 正方形说课课件ppt,共18页。PPT课件主要包含了23正方形,正方形的定义,正方形的判定,正方形,2还有什么困惑等内容,欢迎下载使用。