2021届上海市浦东新区高考数学三模练习题
展开1.函数y=的单调递减区间为 .
2.已知=(2,3),=(4,x)且,则x= .
3.已知csx=,则= .
4.若从总体中随机抽取的样本为:﹣2、﹣2、﹣1、1、1、3、2、2、4、2,则该总体标准差的点估计值是 (精确到0.1).
5.方程lg2(x+14)+lg2(x+2)=3+lg2(x+6)的解是 .
6.在5张卡片上分别写上数字1,2,3,4,5,然后把它们混合,再任意排成一行,组成5位数,则得到能被2整除的5位数的概率为 .
7.数列{an}的前n项和为Sn,若点(n,Sn)(n∈N*)在函数y=lg2(x+1)的反函数的图象上,则an= .
8.若复数z=x+yi(x,y∈R,i为虚数单位)满足|x|+|y|≤1,则z在复平面上所对应的图形的面积是 .
9.若直线3x+4y+m=0与曲线(θ为参数)没有公共点,则实数m的取值范围是 .
10.设函数f(x)=csx﹣m(x∈[0,3π])的零点为x1、x2、x3,若x1、x2、x3成等比数列,则实数m的值为 .
11.已知函数f(x)=,若存在实数x0,使得对于任意的实数x都有f(x)≤f(x0)成立,则实数a的取值范围是 .
12.已知||=||=1,若存在m,n∈R,使得m+与n+夹角为60°,且|(m+)﹣(n+)|=,则||的最小值为 .
二、选择题
13.下列命题正确的是( )
A.三点确定一个平面
B.三条相交直线确定一个平面
C.对于直线a、b、c,若a⊥b,b⊥c,则a∥c
D.对于直线a、b、c,若a∥b,b∥c,则a∥c
14.关于x、y的二元一次方程组的系数行列式D=0是该方程组有解的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
15.已知两定点A(﹣1,0)、B(1,0),动点P(x,y)满足tan∠PAB•tan∠PBA=2,则点P的轨迹方程是( )
A.x2﹣=1B.x2﹣=1(y≠0)
C.x2+=1D.x2+=1(y≠0)
16.已知函数f(x)=sinx,各项均不相等的数列{an}满足|ai|≤(i=1,2,…n),记G(n)=.①若an=(﹣)n,则G(2000)>0;②若{an}是等差数列,且a1+a2+…+an≠0,则G(n)>0对n∈N*恒成立.关于上述两个命题,以下说法正确的是( )
A.①②均正确B.①②均错误C.①对,②错D.①错,②对
三、解答题
17.如图,在直三棱柱A1B1C1﹣ABC中,AB=BC=2,∠ABC=,点P、Q分别为A1B1、BC的中点,C1Q与底面ABC所成的角为arctan2.
(1)求异面直线PB与QC1所成角的大小(结果用反三角函数表示);
(2)求点C与平面AQC1的距离.
18.已知函数f(x)=Asin(ωx+φ)(ω>0,0<φ<)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)在△ABC中,角A、B、C的对边分别为a、b、c,若f()=2,a=2,求△ABC周长的取值范围.
19.流行性感冒是由流感病毒引起的急性呼吸道传染病.某市去年11月份曾发生流感,据统计,11月1日该市的新感染者有30人,以后每天的新感染者比前一天的新感染者增加50人.由于该市医疗部门采取措施,使该种病毒的传播得到控制,从11月k+1(9≤k≤29,k∈N*)日起每天的新感染者比前一天的新感染者减少20人.
(1)若k=9,求11月1日至11月10日新感染者总人数;
(2)若到11月30日止,该市在这30天内的新感染者总人数为11940人,问11月几日,该市新感染者人数最多?并求这一天的新感染者人数.
20.已知直线l:y=x+t与椭圆C:=1交于A、B两点(如图所示),且P(3,)在直线l的上方.
(1)求常数t的取值范围;
(2)若直线PA、PB的斜率分别为k1、k2,求k1+k2的值;
(3)若△APB的面积最大,求∠APB的大小.
21.已知{an},{bn}为两非零有理数列(即对任意的i∈N*,ai,bi均为有理数),{dn}为一无理数列(即对任意的i∈N*,di为无理数).
(1)已知bn=﹣2an,并且(an+bndn﹣andn2)(1+dn2)=0对任意的n∈N*恒成立,试求{dn}的通项公式.
(2)若{dn2}为有理数列,试证明:对任意的n∈N*,(an+bndn﹣andn2)(1+dn2)=1+dn恒成立的充要条件为.
(3)已知sin2θ=(0<θ<),dn=,对任意的n∈N*,(an+bndn﹣andn2)(1+dn2)=1恒成立,试计算bn.
2022年上海市浦东新区进才中学高考数学二模试卷: 这是一份2022年上海市浦东新区进才中学高考数学二模试卷,共20页。试卷主要包含了填空题,选择题,解答题等内容,欢迎下载使用。
2022年上海市浦东新区建平中学高考数学二模试卷: 这是一份2022年上海市浦东新区建平中学高考数学二模试卷,共20页。试卷主要包含了填空题,选择题,解答题等内容,欢迎下载使用。
2022年上海市浦东新区高考数学二模试卷: 这是一份2022年上海市浦东新区高考数学二模试卷,共20页。