专题18:全等三角线中的辅助线做法及常见题型之互补型旋转-备战2022中考数学解题方法系统训练(全国通用)(含答案解析)
展开专题18:第三章 全等三角形中的辅助线的做法及常见题型之互补型旋转
一、单选题
1.Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论
①(BE+CF)=BC,②,③AD·EF,④AD≥EF,⑤AD与EF可能互相平分,
其中正确结论的个数是( )
A.1个 B.2个 C.3个 D.4个
二、填空题
2.如图,P是等边三角形ABC内一点,将线段BP绕点B逆时针旋转60°得到线段BQ,连接AQ.若PA=4,PB=5,PC=3,则四边形APBQ的面积为_______.
3.如图,三个边长均为2的正方形重叠在一起,O1,O2是其中两个正方形的中心,则阴影部分的面积是____.
4.如图,在平面直角坐标系xOy中,A,B两点分别在x轴,y轴的正半轴上,且OA=OB,点C在第一象限,OC=3,连接BC,AC,若∠BCA=90°,则BC+AC的值为_________.
三、解答题
5.如图,在中,,,点在上,点在上,,连接,,,垂足为.证明:.
6.在中,,,于点,
(1)如图1,点,分别在,上,且,当,时,求线段的长;
(2)如图2,点,分别在,上,且,求证:;
(3)如图3,点在的延长线上,点在上,且,求证:;
7.探究问题:
(1)方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠BAF=45°,连接EF,求证DE+BF=EF.感悟解题方法,并完成下列填空:将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴ ∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.
∵ ∠EAF=45°∴ ∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵ ∠1=∠2,∠1+∠3=45°.
即∠GAF=∠________.
又AG=AE,AF=AE
∴ △GAF≌△________.
∴ _________=EF,故DE+BF=EF.
(2)方法迁移:
如图②,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.
8.如图,△ABC是边长为4的等边三角形,点D是线段BC的中点,∠EDF=120°,把∠EDF绕点D旋转,使∠EDF的两边分别与线段AB、AC交于点E、F.
(1)当DF⊥AC时,求证:BE=CF;
(2)在旋转过程中,BE+CF是否为定值?若是,求出这个定值;若不是,请说明理由
9.如图所示,中,,,把一块含角的直角三角板的直角顶点放在的中点上(直角三角板的短直角边为,长直角边为),将三角板绕点按逆时针方向旋转.
(1)在如图所见中,交于,交于,证明;
(2)继续旋转至如图所见,延长交于,延长交于,证明.
10.如图1,四边形ABCD中,BD⊥AD,E为BD上一点,AE=BC,CE⊥BD,CE=ED
(1)已知AB=10,AD=6,求CD;
(2)如图2,F为AD上一点,AF=DE,连接BF,交BF交AE于G,过G作GH⊥AB于H,∠BGH=75°.求证:BF=2GH+EG.
11.一位同学拿了两块三角尺,做了一个探究活动:将的直角顶点放在的斜边的中点处,设.
(1)如图1所示,两三角尺的重叠部分为,则重叠部分的面积为______,周长为______.
(2)将如图1所示中的绕顶点逆时针旋转,得到如图2所示,此时重叠部分的面积为______,周长为______.
(3)如果将绕旋转到不同于如图1所示和如图2所示的图形,如图3所示,请你猜想此时重叠部分的面积为______.
(4)在如图3所示情况下,若,求出重叠部分图形的周长.
12.阅读下面材料:
小炎遇到这样一个问题:如图1,点E、F分别在正方形ABCD的边BC,CD上,∠EAF=45°,连结EF,则EF=BE+DF,试说明理由.
小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB,AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决了这个问题(如图2).
参考小炎同学思考问题的方法,解决下列问题:
(1)如图3,四边形ABCD中,AB=AD,∠BAD=90°点E,F分别在边BC,CD上,∠EAF=45°.若∠B,∠D都不是直角,则当∠B与∠D满足_ 关系时,仍有EF=BE+DF;
(2)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1, EC=2,求DE的长.
参考答案
1.C
【解析】
【分析】
【详解】
解:∵Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,
∴AD =DC,∠EAD=∠C=45°,∠EDA=∠MDN-∠ADN =90°-∠ADN=∠FDC.
∴△EDA≌△FDC(ASA).
∴AE=CF.
∴BE+CF= BE+ AE=AB.
在Rt△ABC中,根据勾股定理,得AB=BC.
∴(BE+CF)=BC.
∴结论①正确.
设AB=AC=a,AE=b,则AF=BE= a-b.
∴.
∴.
∴结论②正确.
如图,过点E作EI⊥AD于点I,过点F作FG⊥AD于点G,过点F作FH⊥BC于点H,ADEF相交于点O.
∵四边形GDHF是矩形,△AEI和△AGF是等腰直角三角形,
∴EO≥EI(EF⊥AD时取等于)=FH=GD,
OF≥GH(EF⊥AD时取等于)=AG.
∴EF=EO+OF≥GD+AG=AD.
∴结论④错误.
∵△EDA≌△FDC,
∴.
∴结论③错误.
又当EF是Rt△ABC中位线时,根据三角形中位线定理知AD与EF互相平分.
∴结论⑤正确.
综上所述,结论①②⑤正确.故选C.
2.
【解析】
【分析】
由旋转的性质可得△BPQ是等边三角形,由全等三角形的判定可得△ABQ≌△CBP(SAS),由勾股定理的逆定理可得△APQ是直角三角形,求四边形的面积转化为求两个特殊三角形的面积即可.
【详解】
解:连接PQ,
由旋转的性质可得,BP=BQ,
又∵∠PBQ=60°,
∴△BPQ是等边三角形,
∴PQ=BP,
在等边三角形ABC中,∠CBA=60°,AB=BC,
∴∠ABQ=60°-∠ABP
∠CBP=60°-∠ABP
∴∠ABQ=∠CBP
在△ABQ与△CBP中
,
∴△ABQ≌△CBP(SAS),
∴AQ=PC,
又∵PA=4,PB=5,PC=3,
∴PQ=BP=5,PC=AQ=3,
在△APQ中,因为,25=16+9,
∴由勾股定理的逆定理可知△APQ是直角三角形,
∴,
故答案为:
【点睛】
本题主要考查了旋转的性质、全等三角形的判定、勾股定理的逆定理及特殊三角形的面积,解题的关键是作出辅助线,转化为特殊三角形进行求解.
3.2
【解析】
【分析】
根据题意作图,连接,,可得△△,那么可得阴影部分的面积与正方形面积的关系,同理得出另两个正方形的阴影部分面积与正方形面积的关系,从而得出答案.
【详解】
解:连接、,如图:
,,
,
四边形是正方形,
,
在△和△中
△△,
、两个正方形阴影部分的面积是,
同理另外两个正方形阴影部分的面积也是,
.
故答案为:2.
【点睛】
本题主要考查了正方形的性质及全等三角形的证明,把阴影部分进行合理转移是解决本题的难点,难度适中.
4.
【解析】
【分析】
可将△OBC绕着O点顺时针旋转90°,所得的图形与△OAC正好拼成等腰直角三角形BC+AC等于等腰三角形的斜边CD.
【详解】
解:
将△OBC绕O点旋转90°,
∵OB=OA
∴点B落在A处,点C落在D处
且有OD=OC=3,∠COD=90°,∠OAD=∠OBC,
在四边形OACB中
∵∠BOA=∠BCA=90°,
∴∠OBC+∠OAC=180°,
∴∠OAD+∠OAC=180°
∴C、A、D三点在同一条直线上,
∴△OCD为等要直角三角形,根据勾股定理
CD2=OC2+OD2
即CD2=32+32=18
解得CD=
即BC+AC=.
【点睛】
本题考查旋转的性质,旋转前后的图形对应边相等,对应角相等.要求两条线段的长,可利用作图的方法将两条线段化成一条线段,再求这条线段的长度即可,本题就是利用旋转的方法做到的,但做本题时需注意,一定要证明C、A、D三点在同一条直线上.本题还有一种化一般为特殊的方法,因为答案一定可考虑CB⊥y轴的情况,此时四边形OACB刚好是正方形,在做选择或填空题时,也可以起到事半功倍的效果.
5.见解析
【解析】
【分析】
如图,延长到点,使,连接、,根据四边形的内角和和邻补角互补可得,进而可根据SAS证明,可得,,进一步即可求得,然后利用等腰三角形的性质和解直角三角形的知识即可证得结论.
【详解】
证明:如图,延长到点,使,连接、,
,
,
,
,
,,
,
,,
,
,,
,,
,
,
.
【点睛】
本题考查了四边形的内角和、全等三角形的判定和性质、等腰三角形的性质和解直角三角形等知识,正确添加辅助线、灵活应用上述知识是解题的关键.
6.(1) ;(2)见解析;(3)见解析.
【解析】
【分析】
(1)根据等腰三角形的性质、直角三角形的性质得到 AD=BD=DC= ,求出 ∠MBD=30°,根据勾股定理计算即可;
(2)证明△BDE≌△ADF,根据全等三角形的性质证明;
(3)过点 M作 ME∥BC交 AB的延长线于 E,证明△BME≌△AMN,根据全等三角形的性质得到 BE=AN,根据等腰直角三角形的性质、勾股定理证明结论.
【详解】
(1)解:,,,
,,,
,
,
,
,
,
,
由勾股定理得,,即,
解得,,
;
(2)证明:,,
,
在和中,
,
;
(3)证明:过点作交的延长线于,
,
则,,
,
,,
,
在和中,
,
,
,
.
【点睛】
本题考查的是等腰直角三角形的性质、全等三角形的判定和性质、直角三角形
的性质,掌握全等三角形的判定定理和性质定理是解题的关键.
7.(1)EAF、△EAF、GF;(2)DE+BF=EF.
【解析】
【分析】
(1)利用角之间的等量代换得出∠GAF=∠FAE,再利用SAS得出△GAF≌△EAF,得出答案;
(2)将△ADE顺时针旋转90°得到△ABG,再证明△AGF≌△AEF,即可得出答案;
【详解】
解:(1)如图①所示;
根据等量代换得出∠GAF=∠FAE,
利用SAS得出△GAF≌△EAF,
∴GF=EF,
故答案为:FAE;△EAF;GF;
(2)DE+BF=EF,理由如下:
假设∠BAD的度数为m,将△ADE绕点A顺时针旋转,m°得到△ABG,如图,此时AB与AD重合,由旋转可得:
AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴ ∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵ ,
∴ .
∵ ∠1=∠2,
∴ ∠1+∠3=.
即∠GAF=∠EAF.
∵在△AGF和△AEF中,
,
∴ △GAF≌△EAF(SAS).
∴ GF=EF.
又∵ GF=BG+BF=DE+BF,
∴ DE+BF=EF.
【点睛】
此题主要考查了全等三角形的判定和性质、以及折叠的性质和旋转变换性质等知识,证得△GAF≌△EAF是解题的关键.
8.(1)证明见解析;(2)是,2.
【解析】
【分析】
(1)根据四边形内角和为360°,可求∠DEA=90°,根据“AAS”可判定△BDE≌△CDF,即可证BE=CF;
(2)过点D作DM⊥AB于M,作DN⊥AC于N,如图2,易证△MBD≌△NCD,则有BM=CN,DM=DN,进而可证到△EMD≌△FND,则有EM=FN,就可得到BE+CF=BM+EM+CF=BM+FN+CF=BM+CN=2BM=2BD×cos60°=BD=BC=2.
【详解】
(1)∵△ABC是边长为4的等边三角形,点D是线段BC的中点,
∴∠B=∠C=60°,BD=CD,
∵DF⊥AC,
∴∠DFA=90°,
∵∠A+∠EDF+∠AFD+∠AED=180°,
∴∠AED=90°,
∴∠DEB=∠DFC,且∠B=∠C=60°,BD=DC,
∴△BDE≌△CDF(AAS)
(2)过点D作DM⊥AB于M,作DN⊥AC于N,
则有∠AMD=∠BMD=∠AND=∠CND=90°.
∵∠A=60°,
∴∠MDN=360°-60°-90°-90°=120°.
∵∠EDF=120°,
∴∠MDE=∠NDF.
在△MBD和△NCD中,
,
∴△MBD≌△NCD(AAS)
BM=CN,DM=DN.
在△EMD和△FND中,
,
∴△EMD≌△FND(ASA)
∴EM=FN,
∴BE+CF=BM+EM+CF=BM+FN+CF=BM+CN
=2BM=2BD×cos60°=BD=BC=2.
【点睛】
本题主要考查了等边三角形的判定与性质、全等三角形的判定与性质、特殊角的三角函数值等知识,通过证明三角形全等得到BM=CN,DM=DN,EM=FN是解决本题的关键.
9.(1)见解析;(2)见解析.
【解析】
【分析】
(1)连接BD,证明△DMB≌△DNC.根据已知,全等条件已具备两个,再证出∠MDB=∠NDC,用ASA证明全等,四边形DMBN的面积不发生变化,因为它的面积始终等于△ABC面积的一半;
(2)同样利用(1)中的证明方法可以证出△DMB≌△DNC;
(3)方法同(1).
【详解】
证明:(1)连接BD,
∵AB=BC,∠ABC=90°,点D为AC的中点
∴BD⊥AC,∠A=∠C=45°
∴BD=AD=CD
∴∠ABD=∠A=45°
∴∠MBD=∠C=45°
∵∠MDB+∠BDN=90°
∠NDC+∠BDN=90°
∴∠MDB=∠NDC
在△MDB和△NDC中
∴△MDB≌△NDC(ASA)
∴DM=DN(5分)
(2)DM=DN仍然成立.理由如下:连接BD,
由(1)知BD⊥AC,BD=CD
∴∠ABD=∠ACB=45°
∵∠ABD+∠MBD=180°∠ACB+∠NCD=180°
∴∠MBD=∠NCD
∵BD⊥AC
∴∠MDB+∠MDC=90°
又∠NDC+∠MDC=90°
∴∠MDB=∠NDC
在△MDB和△NDC中
∴△MDB≌△NDC(ASA)
∴DM=DN.
【点睛】
本题主要考查学生的推理能力,题目比较典型,利用ASA求三角形全等(手拉手模型),还运用了全等三角形的性质,等腰直角三角形的性质,及等腰三角形三线合一定理等知识.
10.(1)2;(2)证明见解析
【解析】
【分析】
(1)由勾股定理得出BD==8,由HL证得Rt△ADE≌Rt△BEC,得出BE=AD,则CE=ED=BD﹣BE=BD﹣AD=2,由等腰直角三角形的性质即可得出结果;
(2)连接CF,易证AF=CE,AD∥CE,得出四边形AECF是平行四边形,则AE=CF,AE∥CF,得出∠CFD=∠EAD,∠CFB=∠AGF,由Rt△ADE≌Rt△BEC,得出∠CBE=∠EAD,推出∠CBE=∠CFD,证得△BCF是等腰直角三角形,则BF=BC=CF=AE,∠FBC=∠BFC=45°,推出∠AGF=45°,∠AGH=60°,∠GAH=30°,则AG=2GH,得出BF=AE=(AG+EG),即可得出结论.
【详解】
(1)解:∵BD⊥AD,
∴BD===8,
∵CE⊥BD,
∴∠CEB=∠EDA=90°,
在Rt△ADE和Rt△BEC中,,
∴Rt△ADE≌Rt△BEC(HL),
∴BE=AD,
∴CE=ED=BD﹣BE=BD﹣AD=8﹣6=2,
∴CD=CE=2;
(2)解:连接CF,如图2所示:
∵AF=DE,DE=CE,
∴AF=CE,
∵BD⊥AD,CE⊥BD,
∴AD∥CE,
∴四边形AECF是平行四边形,
∴AE=CF,AE∥CF,
∴∠CFD=∠EAD,∠CFB=∠AGF,
由(1)得:Rt△ADE≌Rt△BEC,
∴∠CBE=∠EAD,
∴∠CBE=∠CFD,
∵∠FBD+∠BFC+∠CFD=90°,
∴∠FBD+∠BFC+∠CBE=90°,
∴∠BCF=90°,
∵AE=BC,
∴BC=CF,
∴△BCF是等腰直角三角形,
∴BF=BC=CF=AE,∠FBC=∠BFC=45°,
∴∠AGF=45°,
∵∠BGH=75°,
∴∠AGH=180°﹣45°﹣75°=60°,
∵GH⊥AB,
∴∠GAH=30°,
∴AG=2GH,
∴BF=AE=(AG+EG),
∴BF=2GH+EG.
【点睛】
本题考查了等腰直角三角形的判定与性质、含30°角直角三角形的判定与性质、全等三角形的判定与性质、平行线的判定与性质、平行四边形的判定与性质等知识,熟练掌握直角三角形的性质、作辅助线构建平行四边形是解题的关键.
11.(1)4,;(2)4,8;(3)4;(4)
【解析】
【分析】
根据,,得出AB的值,再根据M是AB的中点,得出,求出重叠部分的面积,再根据AM,MC,AC的值即可求出周长;
易得重叠部分是正方形,边长为,面积为,周长为
过点M分别作AC、BC的垂线MH、ME,垂足为H、求得≌,则阴影部分的面积等于正方形CEMH的面积
先过点M作于点E,于点H,根据,,得出≌,从而得出,,最后根据AD和DF的值,算出,即可得出答案
【详解】
解:,,
,
是AB的中点,
,
,
,
重叠部分的面积是,
周长为:;
故答案为4,;
重叠部分是正方形,
边长为,面积为,
周长为.
故答案为4,8.
过点M分别作AC、BC的垂线MH、ME,垂足为H、E,
是斜边AB的中点,,
,
,
,
又,
,,
,
在和中,
,
≌,
阴影部分的面积等于正方形CEMH的面积,
正方形CEMH的面积是;
阴影部分的面积是4;
故答案为4.
如图所示, 过点M作于点E,于点H,
四边形MECH是矩形,
,
,
,
,
,
在和中,
,
≌
,
,
,
,
.
四边形DMGC的周长为:
.
【点睛】
此题考查了等腰直角三角形,利用等腰直角三角形的性质,等腰直角三角形的面积公式,正方形的面积公式,全等三角形的判定和性质求解.
12.(1)∠B+∠D=180°(或互补);(2)∴
【解析】
试题分析:(1)如图,△ABE绕着点A逆时针旋转90°得到△ADG,利用全等的知识可知,要使EF=BE+DF,即EF=DG+DF,即要F、D、G三点共线,即∠ADG+∠ADF=180°,即∠B+∠D=180°.
(2) 把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合,通过证明△AEG≌△AED得到DE=EG,由勾股定理即可求得DE的长.
(1)∠B+∠D=180°(或互补).
(2)∵ AB=AC,
∴ 把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合.
则∠B=∠ACG,BD=CG,AD=AG.
∵在△ABC中,∠BAC=90°,
∴∠ACB+∠ACG=∠ACB+∠B=90°于,即∠ECG=90°.
∴ EC2+CG2=EG2.
在△AEG与△AED中,
∠EAG=∠EAC+∠CAG=∠EAC+∠BAD=90°-∠EAD=45°=∠EAD.
又∵AD=AG,AE=AE,
∴△AEG≌△AED .
∴DE=EG.
又∵CG=BD,
∴ BD2+EC2=DE2.
∴.
考点:1.面动旋转问题;2.全等三角形的判定和性质;3.勾股定理.
初中数学中考复习 专题17:全等三角线中的辅助线做法及常见题型之双等腰旋转-备战2021中考数学解题方法系统训练(全国通用): 这是一份初中数学中考复习 专题17:全等三角线中的辅助线做法及常见题型之双等腰旋转-备战2021中考数学解题方法系统训练(全国通用),共27页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
专题12:全等三角线中的辅助线做法及常见题型之截长补短-备战2022中考数学解题方法系统训练(全国通用)(含答案解析): 这是一份专题12:全等三角线中的辅助线做法及常见题型之截长补短-备战2022中考数学解题方法系统训练(全国通用)(含答案解析),共28页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
专题09:全等三角线中的辅助线做法及常见题型之斜边上的中线-备战2022中考数学解题方法系统训练(全国通用)(含答案解析): 这是一份专题09:全等三角线中的辅助线做法及常见题型之斜边上的中线-备战2022中考数学解题方法系统训练(全国通用)(含答案解析),共14页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。