终身会员
搜索
    上传资料 赚现金
    2022届高中数学新人教B版 选择性必修第一册 第一章1.2.2空间中的平面与空间向量 课时作业 练习
    立即下载
    加入资料篮
    2022届高中数学新人教B版 选择性必修第一册 第一章1.2.2空间中的平面与空间向量 课时作业 练习01
    2022届高中数学新人教B版 选择性必修第一册 第一章1.2.2空间中的平面与空间向量 课时作业 练习02
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教B版 (2019)选择性必修 第一册1.2.2 空间中的平面与空间向量课后测评

    展开
    这是一份高中数学人教B版 (2019)选择性必修 第一册1.2.2 空间中的平面与空间向量课后测评,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题
    1.设平面α的法向量为(1,-2,2),平面β的法向量为(2,λ,4),若α∥β,则λ等于( )
    A.2 B.4
    C.-2 D.-4
    2.若平面α,β的法向量分别为a=(-1,2,4),b=(x,-1,-2),并且α⊥β,则x的值为( )
    A.10 B.-10
    C.eq \f(1,2) D.-eq \f(1,2)
    3.已知eq \(AB,\s\up6(→))=(2,2,1),eq \(AC,\s\up6(→))=(4,5,3),则平面ABC的一个单位法向量可表示为( )
    A.a=(-1,2,-2) B.a=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),-1,1))
    C.a=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3),-\f(2,3),\f(2,3))) D.a=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3),\f(2,3),-\f(2,3)))
    4.已知eq \(AB,\s\up6(→))=(-3,1,2),平面α的一个法向量为n=(2,-2,4),点A不在平面α内,则直线AB与平面α的位置关系为 ( )
    A.AB⊥α B.AB⊂α
    C.AB与α相交但不垂直 D.AB∥α
    二、填空题
    5.如图所示,在三棱锥P-ABC中,PA⊥BC,PB⊥AC,点G是P在平面ABC内的射影,则G是△ABC的________.
    6.已知l∥α,且l的方向量为(2,-8,1),平面α的法向量为(1,y,2),则y=________.
    7.已知点P是平行四边形ABCD所在的平面外一点,如果eq \(AB,\s\up6(→))=(2,-1,-4),eq \(AD,\s\up6(→))=(4,2,0),eq \(AP,\s\up6(→))=(-1,2,-1).
    对于结论:①AP⊥AB;②AP⊥AD;③eq \(AP,\s\up6(→))是平面ABCD的法向量;④eq \(AP,\s\up6(→))∥eq \(BD,\s\up6(→)).
    其中正确的是________(填序号).
    三、解答题
    8.
    如图所示,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD,侧面PBC⊥底面ABCD.求证:PA⊥BD.
    9.已知正方体ABCD-A1B1C1D1中,E为棱CC1上的动点.
    (1)求证:A1E⊥BD;
    (2)若平面A1BD⊥平面EBD,试确定E点的位置.
    [尖子生题库]
    10.
    如图所示,在三棱锥P-ABC中,AB=AC,点D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.已知BC=8,PO=4,AO=3,OD=2.
    (1)证明:AP⊥BC;
    (2)若点M是线段AP上一点,且AM=3,试证明平面AMC⊥平面BMC.
    课时作业(五) 空间中的平面与空间向量
    1.解析:∵α∥β,∴(1,-2,2)=m(2,λ,4),∴λ=-4.
    答案:D
    2.解析:因为α⊥β,所以它们的法向量也互相垂直,所以a·b=(-1,2,4)·(x,-1,-2)=0,即-x-2-8=0,解得x=-10.
    答案:B
    3.解析:设平面ABC的法向量为a=(x,y,z),
    则有eq \b\lc\{\rc\ (\a\vs4\al\c1(\(AB,\s\up12(→))·a=0,,\(AC,\s\up12(→))·a=0))
    ∴eq \b\lc\{\rc\ (\a\vs4\al\c1(2x+2y+z=0,4x+5y+3z=0)),
    令z=1,得y=-1,x=eq \f(1,2),∴a=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),-1,1))
    故平面ABC的一个单位法向量为a=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3),-\f(2,3),\f(2,3))).
    答案:C
    4.解析:因为n·eq \(AB,\s\up12(→))=2×(-3)+(-2)×1+4×2=0,所以n⊥eq \(AB,\s\up12(→)).又点A不在平面α内,n为平面α的一个法向量,所以AB∥α,故选D.
    答案:D
    5.解析:连接AG,BG(图略),则AG,BG分别为AP,BP在平面ABC内的射影.因为PA⊥BC,所以由三垂线定理的逆定理知AG⊥BC,同理,BG⊥AC,所以G是△ABC的垂心.
    答案:垂心
    6.解析:∵l∥α,∴(2,-8,1)·(1,y,2)=0,而2×1-8y+2=0,
    ∴y=eq \f(1,2).
    答案:eq \f(1,2)
    7.解析:eq \(AP,\s\up12(→))·eq \(AB,\s\up12(→))=(-1,2,-1)·(2,-1,-4)
    =-1×2+2×(-1)+(-1)×(-4)=0,
    ∴AP⊥AB,即①正确.
    eq \(AP,\s\up12(→))·eq \(AD,\s\up12(→))=(-1,2,-1)·(4,2,0)
    =-1×4+2×2+(-1)×0=0.
    ∴AP⊥AD,即②正确.
    又∵AB∩AD=A,∴AP⊥平面ABCD,
    即eq \(AP,\s\up12(→))是平面ABCD的一个法向量,③正确.④不正确.
    答案:①②③
    8.证明:
    如图,取BC的中点O,连接AO交BD于点E,连接PO.
    因为PB=PC,所以PO⊥BC.
    又平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,
    所以PO⊥平面ABCD,所以AP在平面ABCD内的射影为AO.
    在直角梯形ABCD中,由于AB=BC=2CD,
    易知Rt△ABO≌Rt△BCD,
    所以∠BEO=∠OAB+∠DBA=∠DBC+∠DBA=90°,
    即AO⊥BD.
    由三垂线定理,得PA⊥BD.
    9.解析:以D为坐标原点,以DA,DC,DD1所在直线分别为x轴,y轴,z轴,建立空间直角坐标系.设正方体棱长为a,则D(0,0,0),A(a,0,0),B(a,a,0),C(0,a,0),A1(a,0,a),C1(0,a,a).
    设E(0,a,e)(0≤e≤a).
    (1)eq \(A1E,\s\up12(→))=(-a,a,e-a),
    eq \(BD,\s\up12(→))=(-a,-a,0),
    eq \(A1E,\s\up12(→))·eq \(BD,\s\up12(→))=a2-a2+(e-a)·0=0,∴eq \(A1E,\s\up12(→))⊥eq \(BD,\s\up12(→)),
    即A1E⊥BD.
    (2)设平面A1BD,平面EBD的法向量分别为n1=(x1,y1,z1),n2=(x2,y2,z2).
    ∵eq \(DB,\s\up12(→))=(a,a,0),eq \(DA1,\s\up12(→))=(a,0,a),eq \(DE,\s\up12(→))=(0,a,e).
    ∴eq \b\lc\{\rc\ (\a\vs4\al\c1(n1·\(DB,\s\up12(→))=0,,n1·\(DA1,\s\up12(→))=0,))eq \b\lc\{\rc\ (\a\vs4\al\c1(n2·\(DB,\s\up12(→))=0,,n2·\(DE,\s\up12(→))=0,))
    即eq \b\lc\{\rc\ (\a\vs4\al\c1(ax1+ay1=0,,ax1+az1=0,))eq \b\lc\{\rc\ (\a\vs4\al\c1(ax2+ay2=0,,ay2+ez2=0.))
    取x1=x2=1,得n1=(1,-1,-1),n2=eq \b\lc\(\rc\)(\a\vs4\al\c1(1,-1,\f(a,e))).
    由平面A1BD⊥平面EBD得n1⊥n2.
    ∴n1·n2=2-eq \f(a,e)=0,即e=eq \f(a,2).
    ∴当E为CC1的中点时,平面A1BD⊥平面EBD.
    10.证明:
    建立如图所示的空间直角坐标系,则O(0,0,0),A(0,-3,0),B(4,2,0),C(-4,2,0),P(0,0,4),
    (1)eq \(AP,\s\up12(→))=(0,3,4),eq \(BC,\s\up12(→))=(-8,0,0),
    所以eq \(AP,\s\up12(→))·eq \(BC,\s\up12(→))=(0,3,4)·(-8,0,0)=0,
    所以eq \(AP,\s\up12(→))⊥eq \(BC,\s\up12(→)),即AP⊥BC.
    (2)由(1)知|AP|=5,
    又|AM|=3,且点M在线段AP上,
    所以eq \(AM,\s\up12(→))=eq \f(3,5)eq \(AP,\s\up12(→))=eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(9,5),\f(12,5))).
    又因为eq \(BA,\s\up12(→))=(-4,-5,0),
    所以eq \(BM,\s\up12(→))=eq \(BA,\s\up12(→))+eq \(AM,\s\up12(→))=eq \b\lc\(\rc\)(\a\vs4\al\c1(-4,-\f(16,5),\f(12,5))),
    则eq \(AP,\s\up12(→))·eq \(BM,\s\up12(→))=(0,3,4)·eq \b\lc\(\rc\)(\a\vs4\al\c1(-4,-\f(16,5),\f(12,5)))=0,
    所以eq \(AP,\s\up12(→))⊥eq \(BM,\s\up12(→)),即AP⊥BM.
    又根据(1)的结论知AP⊥BC,BM∩BC=B,
    所以AP⊥平面BMC,于是AM⊥平面BMC.
    又因为AM⊂平面AMC,
    故平面AMC⊥平面BMC.
    相关试卷

    高中人教B版 (2019)1.2.2 空间中的平面与空间向量综合训练题: 这是一份高中人教B版 (2019)1.2.2 空间中的平面与空间向量综合训练题,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    人教B版 (2019)选择性必修 第一册1.2.2 空间中的平面与空间向量同步达标检测题: 这是一份人教B版 (2019)选择性必修 第一册1.2.2 空间中的平面与空间向量同步达标检测题,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    高中数学人教B版 (2019)选择性必修 第一册1.2.1 空间中的点、直线与空间向量课堂检测: 这是一份高中数学人教B版 (2019)选择性必修 第一册1.2.1 空间中的点、直线与空间向量课堂检测,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map