所属成套资源:榆林绥德中学高一下学期第四次阶段性测试及答案(九科)
2021榆林绥德中学高一下学期第四次阶段性测试数学含答案
展开
这是一份2021榆林绥德中学高一下学期第四次阶段性测试数学含答案,共6页。试卷主要包含了 集合,集合,则=, 已知为等差数列,,,则, 设,则下列不等式中正确的是, 若x,y∈R,,则的最小值是, 设sin,则等内容,欢迎下载使用。
一、单选题(共60分,每小题5分)
1. 集合,集合,则=( )
A. B. 或
C. D.
【答案】A
2. 已知为等差数列,,,则( )
A. B. C. D.
【答案】B
3. 设,则下列不等式中正确的是
A. B.
C. D.
【答案】B
4. 若x,y∈R,,则的最小值是( )
A. 4B. 5C. 7D. 11
【答案】B
5. 设sin,则
A. B. C. D.
【答案】A
6. 如图,在正方体中,分别是棱,的中点,则与平面的位置关系是( )
A. 平面B. 与平面相交
C. 在平面内D. 与平面的位置关系无法判断
【答案】A
7. 在中,在点为边上靠近点的三等分点,为的中点,则
A. B.
C. D.
【答案】B
8. 不等式的解集为,则关于的不等式的解集为( )
A. B. C. D.
【答案】D
9. 已知,,直线恒过点(,1),则的最小值为( )
A. 8B. 9C. 16D. 18
【答案】B
10. 在中,内角的对边分别为,若,则角为
A. B. C. D.
【答案】A
11. 公元前世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在跑步英雄阿基里斯前面米处开始与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的倍.当比赛开始后,若阿基里斯跑了米,此时乌龟便领先他米,当阿基里斯跑完下一个米时,乌龟先他米,当阿基里斯跑完下一个米时,乌龟先他米所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为米时,乌龟爬行的总距离为( )
A. 米B. 米
C. 米D. 米
【答案】D
12. 以正方形的边长为底,向外作4个等腰三角形,腰长为2,则该图的面积最大为( )
A. B.
C. D.
【答案】C
二、填空题(本大题共4小题,每小题5分,共20分)
13. 已知为第二象限角,为其终边上一点,且,则x=___________.
【答案】
14. 过点且与直线l:垂直的直线方程为______.(请用一般式表示)
【答案】
15. 已知正实数满足,则的最大值为___________.
【答案】
16. 如图,在离地面高100的热气球M上,观测到山顶C处的仰角为、山脚A处的俯角为,已知,则山的高度BC为___________.
【答案】
三、解答题:解答应写出文字说明,证明过程或演算步骤.(本大题共6道题,计70分)
17. 解关于x的不等式
【答案】时, 或;时,;时,或.
18. 已知函数.
(1)求函数的最小正周期及单调增区间;
(2)当时,求函数的最大值及最小值.
【答案】(1)周期,增区间为(2)最大值为,最小值为-1
19. 已知向量.
(1)若,求的值;
(2)若,求的值.
【答案】(1);(2)或.
20. △ABC的内角A,B,C的对边分别为a,b,c,已知.
(1)求角C的大小;
(2)若c=2,求△ABC面积的最大值.
【答案】(1);(2).
21. 为数列的前n项和,,且.
(1)求的通项公式;
(2)设,求数列的n项和.
【答案】(1);(2).
22. 在数列中,,当时,其前n项和满足.
(1)求证:数列为等差数列;
(2)设,数列的前n项和为,求使得对所有都成立的实数m的取值范围.
【答案】(1)证明见解析;(2)
(1)根据与的关系式得到,通过整理可得,从而证明数列为等差数列;
(2)根据(1)求出,代入即可求出的通项公式,通过裂项相消求和法求出,然后根据分离参数的方法实数m的取值范围.
【详解】(1)因为时, ,
所以,即 ,
所以,又,所以数列是首项为1,公差为2的等差数列;
(2)由(1)知:数列是首项为1,公差为2的等差数列,
所以,所以,
所以,
所以,
由,得,
因为在内单调递减,在内单调递增,
时,;时,,所以,
所以,所以只需.
所以使得对所有都成立的实数m的取值范围为.
相关试卷
这是一份2022-2023学年陕西省榆林市绥德中学高二上学期第二次阶段性测试数学试题(解析版),共17页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2020榆林绥德县绥德中学高二上学期期末考试数学(理)试题含答案,共5页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
这是一份2020榆林绥德县绥德中学高二上学期期末考试数学(文)试题含答案,共4页。试卷主要包含了解答题等内容,欢迎下载使用。